• Title/Summary/Keyword: argumentative ability

Search Result 4, Processing Time 0.016 seconds

Analysis of the Development of Argumentative Abilities in Elementary School Students' via the SSI Argumentation Education Program (SSI 논증 교육 프로그램에 참여한 초등학생들의 논증 능력 발달 분석)

  • Min, Suhyun;Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.3
    • /
    • pp.446-459
    • /
    • 2024
  • This study aims to examine the development and learning process of the argumentative abilities in elementary school students with regards to learning science. Toward this end, the SSI argumentation education program was implemented in conjunction with the science curriculum for sixth-grade students across 10 months. In this process, the scoring criteria in terms of formal and content aspects were developed and used to assess their argumentative text analysis and expression abilities. The results were as follows: First, the type of SSI influenced their ability to analyze argumentative texts. However, their formal and content aspects improved as learning progressed. Second, with regards to the formal aspect associated with the ability to express argumentative texts, reasons were initially most frequently cited. Over time, incorporating evidence to support these reasons and the use of rebuttal also increased. Third, in terms of content aspect, the level of use of all elements increased as learning progressed; however, level of acknowledgments and rebuttal elements exhibited a relatively slower progress. In summary, ability of the students to analyze and express argumentative texts improved as they increasingly gained experience in learning about argumentation. The study deduced that elementary school students can develop their argumentative abilities through appropriate learning support, such as teacher feedback, along with implementation of the SSI argumentation education program over an extended period. Based on these results, the study proposes the development of SSI materials and incorporation of SSI argumentative writing in the science curriculum.

Analysis of Secondary Students' Causal Explanation about a Genetic Phenomena (중학생들의 유전 현상에 대한 인과적 설명 글쓰기 분석)

  • Lee, Shinyoung;Kim, Mi-young
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of this study was to analyze the knowledge and ability levels of middle school students in four areas: conceptual understanding, argument construction, justification schemes, and use of scientific knowledge in a causal explanation for a genetic phenomenon. A group of 162 middle school students who have taken a class titled Genetics and Evolution participated in the study. Each student answered-and justified the answer to-one question pertaining to genetics. Ability levels were rated from level 0 to level 4, with 4 being the top rating. Students were required to choose one of two competing arguments to explain whether green seed pimps and red seed pimps of the same size and shape were the same species or not. Analyzing conceptual understanding: 47% of the respondents provided the correct answer. Analyzing their abilities for constructing an argument: 75% of the students with the correct answer and 42% of the students with the incorrect answer were evaluated to be at ability level 3 or 4 for argument construction. Analyzing the students' justification schemes: "Scientific idea" and "Analogy" were the most frequently used schemes. Analyzing their use of scientific knowledge: of the students who selected the scientific idea justification scheme, 36% used the correct scientific knowledge, but the remainder used inaccurate or nonspecific scientific knowledge. These findings provide implication for encouraging argumentative writing explaining scientific phenomena regarding epistemic practice.

Investigation of Scientific Argumentation in the Classes for Elementary Gifted Students (초등 단위 학교 영재 수업에서 나타나는 과학적 논증 과정에 대한 탐색)

  • Lim, Hyeon-Ju;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.4
    • /
    • pp.513-531
    • /
    • 2012
  • This study was to analyze the characteristic of scientific argumentation in the classes for the gifted of elementary school. The participants of this study were 5 fifth graders and 9 sixth graders, 14 in total, from the basic unit schools for gifted students of J elementary school in Incheon city. And it constituted small scale groups made up of 2~3 students with similar or identical ability in scientific reasoning. It had set up hypothesis for each group before the experiment, and students had a group discussion as a whole after the experiment. Classes were conducted 4 times, all courses were recorded as a sound/video. The ability in scientific reasoning of the students was inspected, making use of SRT II by means of pre-survey, and their argumentation levels were analyzed, utilizing 'Rubric for scientific argumentation course assessment.' As a result, argumentations did not incurred in every class. Analysis in argumentations of the students resulted in low level argumentation. This means argumentation cannot incur based on that with the limit in understanding the principle of experiments over the threshold of textbook no matter that he is an gifted student or not. The student both in formal operational period and transition period (2B/3A), the ability of scientific thinking in upper level, was improved of his argumentative ability in an overall aspect. However, a student of concrete operational period, the ability of scientific thinking in lower level, had argumentation with still lower level even after the experiment at the moment of discussing with the students on the upper level of scientific thinking ability.

Claim-Evidence Approach for the Opportunity of Scientific Argumentation

  • Park, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.620-636
    • /
    • 2006
  • The purpose of this study was to analyze one science teacher's understanding of student argumentation and his explicit teaching strategies for implementing it in the classroom. One middle school science teacher, Mr. Field, and his students of 54 participated in this study. Data were collected through three semi-structured interviews, 60 hours of classroom observations, and two times of students' lab reports for eight weeks. Coding categories were developed describing the teacher's understanding of scientific argumentation and a description of the main teaching strategy, the Claim-Evidence Approach, was introduced. Toulmin's approach was employed to analyze student discourse as responses to see how much of this discourse was argumentative. The results indicated that Mr. Field defined scientific inquiry as the abilities of procedural skills through experimentation and of reasoning skills through argumentation. The Claim-Evidence Approach provided students with opportunities to develop their own claims based on their readings, design the investigation for evidence, and differentiate pieces of evidence from data to support their claims and refute others. During this approach, the teacher's role of scaffolding was critical to shift students' less extensive argumentation to more extensive argumentation through his prompts and questions. The different level of teacher's involvement, his explicit teaching strategy, and the students' scientific knowledge influenced the students' ability to develop and improve argumentation.