DOI QR코드

DOI QR Code

Analysis of Secondary Students' Causal Explanation about a Genetic Phenomena

중학생들의 유전 현상에 대한 인과적 설명 글쓰기 분석

  • Received : 2018.03.26
  • Accepted : 2018.04.26
  • Published : 2018.04.30

Abstract

The purpose of this study was to analyze the knowledge and ability levels of middle school students in four areas: conceptual understanding, argument construction, justification schemes, and use of scientific knowledge in a causal explanation for a genetic phenomenon. A group of 162 middle school students who have taken a class titled Genetics and Evolution participated in the study. Each student answered-and justified the answer to-one question pertaining to genetics. Ability levels were rated from level 0 to level 4, with 4 being the top rating. Students were required to choose one of two competing arguments to explain whether green seed pimps and red seed pimps of the same size and shape were the same species or not. Analyzing conceptual understanding: 47% of the respondents provided the correct answer. Analyzing their abilities for constructing an argument: 75% of the students with the correct answer and 42% of the students with the incorrect answer were evaluated to be at ability level 3 or 4 for argument construction. Analyzing the students' justification schemes: "Scientific idea" and "Analogy" were the most frequently used schemes. Analyzing their use of scientific knowledge: of the students who selected the scientific idea justification scheme, 36% used the correct scientific knowledge, but the remainder used inaccurate or nonspecific scientific knowledge. These findings provide implication for encouraging argumentative writing explaining scientific phenomena regarding epistemic practice.

본 연구의 목적은 중학생들이 유전과 관련된 과학적 현상에 대한 설명 글쓰기에서 드러나는 개념 성취 수준을 살펴보고, 과학적 현상을 설명하기 위해 어떠한 논변 구조와 정당화 방식을 사용하는지, 과학적 지식을 적절하게 정당화에 이용하고 있는지를 살펴보는 것이다. 이를 위해 서울시 소재 중학교 3학년 학생들 162명이 '유전과 진화'를 학습한 후에 크기와 모양이 같은 초록색 피망과 빨간색 피망이 같은 종류인지 다른 종류인지 다른 주장을 하는 경쟁 논변 중 하나를 선택하여 그 이유를 설명하도록 하였다. 연구 결과, 개념 성취 개념 성취 수준에서 전체 응답자(162명) 중 47%(77명)는 정답을, 53%(85명)는 오답을 제시하였다. 논변 수준을 살펴보면, 정답 학생들은 자료를 주장이나 결론에 연결하여 논거를 제시하는 수준인 수준 3(Constructing warrant)이 오답 학생들은 주장과 자료를 논리적으로 연결하지 않고 증거만 제시하는 수준인 수준 2(Providing evidence)가 가장 많았다. 정당화를 하면서 과학 지식(Scientific idea)의 사용을 학생들의 조사한 결과, 인과적 설명의 질을 결정할 수 있는 요소로 과학 지식을 사용한 학생 중 36%가 옳은 과학 지식(Correct scientific knowledge)을 사용하였으나, 나머지 학생들은 옳지 않은 과학 지식이나 특정되지 않은 과학 지식을 사용하였다. 이와 같은 연구 결과들은 인식적 실행인 과학적 현상을 설명하는 논변적 글쓰기를 장려하기 위해서 논변의 구조에 대한 영역 일반적인 지식의 교수 실행을 통해 관련된 특정 과학 지식을 적용하여 자신의 생각을 증거와 주장을 잘 연결할 수 있도록 훈련하는 것이 필요하다는 것을 강조한다.

Keywords

References

  1. Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A reponse to osborne and patterson. Science Education, 93(1), 26-55
  2. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  3. Cavallo, A. M. L. (1996). Meaningful learning, reasoning ability, and students' understanding and problem solving of topics in genetics. Journal of Research in Science Teaching, 33(6), 625-656. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<625::AID-TEA3>3.0.CO;2-Q
  4. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  5. Duschl, R., & Osborne, J. (2008). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72. https://doi.org/10.1080/03057260208560187
  6. Erduran, S., & Jimenez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht, The Netherlands: Springer.
  7. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Lawrence Erlbaum.
  8. Jeong, W. H. & Cha, H. Y. (1994). High school students’ misconceptions on genetics and evolution. Journal of the Korean Association for Research in Science Education, 14(2), 170-183.
  9. Jimenez-Aleixandre, M. P.,(2014). Determinism and underdetermination in genetics: Implications for students' engagement in argumentation and epistemic practice. Science & Education, 23(2), 465-484. https://doi.org/10.1007/s11191-012-9561-6
  10. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. (2000). "Doing the lesson" or "Doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  11. Karagoz, M., & Cakir, M. (2011). Problem Solving in Genetics: Conceptual and Procedural Difficulties. Educational Sciences: Theory & Practice, 11(3), 1668-1674.
  12. Kargbo, D. B., Hobbs, E. D., & Erickson, G. L. (1980). Children’s beilefs about inherited chracteristics. Journal of Biological Education, 14(2), 137-146. https://doi.org/10.1080/00219266.1980.10668980
  13. Kelly, G. J., Regev, J., & Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research(pp. 137-157). Dordrecht, the Netherlands: Springer.
  14. Kim, M., Anthony, R., & Blades, D. (2014). Decision making through dialogue: a case study of analyzing preservice teachers’ argumentation on socioscientific issues. Research in Science Education, 44(6), 903-926. https://doi.org/10.1007/s11165-014-9407-0
  15. Lee, H.-S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infused science argumentation. Journal of Research in Science Teaching, 51(5), 581-605. https://doi.org/10.1002/tea.21147
  16. Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance-Do students see any relationship? International Journal of Science Education, 22(2), 177-195. https://doi.org/10.1080/095006900289949
  17. Linn, M. C., Songer, N. B., & Eylon, B. S. (1996). Shifts and convergences in science learning and instruction. In R. Calfee and D. Berliner (Eds.), Handbook of educational psycho[ogy. New York: Macmillan.
  18. McNeill, K. L. (2008). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268. https://doi.org/10.1002/sce.20294
  19. McNeill, K. L. (2011). Elementary students' views of explanation, argumentation and evidence and abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. https://doi.org/10.1002/tea.20430
  20. McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. The Journal of the Learning Sciences, 18(3), 416-460. https://doi.org/10.1080/10508400903013488
  21. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  22. Nielson(2013). Dialectical Features of Students' Argumentation: A critical review of argumentation studies in science education. Research in Science Education, 43(1), 371-393. https://doi.org/10.1007/s11165-011-9266-x
  23. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  24. Osborne, J. F., Hendetson, J. B., Szu, E., Wild, A., & Yao, S. Y. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821-846. https://doi.org/10.1002/tea.21316
  25. Piaget, J. (1953). The origin of intelligence in the child. London: Routledge & Kegan.
  26. Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 5-51. https://doi.org/10.1207/S15327809JLS1201_2
  27. Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. https://doi.org/10.1002/sce.20065
  28. Sandoval, W. A., & Cam, A. (2011). Elementary children's judgments of the epistemic status of sources of justification. Science Education, 95(3), 383-408. https://doi.org/10.1002/sce.20426
  29. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students'' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  30. Stevens, R., Wineburg, S., Herrenkohl, L. R., & Bell, P. (2005). Comparative understanding of school subjects: Past, present, and future. Review of Educational Research, 75(2), 125-157. https://doi.org/10.3102/00346543075002125
  31. Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
  32. van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., Plantin, C., Walton, D. N., Willard, C. A., Woods, J., & Zarefsky, D. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum Associates.
  33. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008