• Title/Summary/Keyword: area-based action making process

Search Result 13, Processing Time 0.029 seconds

Object tracking algorithm of Swarm Robot System for using Polygon based Q-learning and parallel SVM

  • Seo, Snag-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.220-224
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Parallel SVM algorithm for object search with multiple robots. We organized an experimental environment with one hundred mobile robots, two hundred obstacles, and ten objects. Then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning, and dodecagon-based Q-learning and parallel SVM algorithm to enhance the fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process. In this paper, the result show that dodecagon-based Q-learning and parallel SVM algorithm is better than the other algorithm to tracking for object.

Hexagon-Based Q-Learning Algorithm and Applications

  • Yang, Hyun-Chang;Kim, Ho-Duck;Yoon, Han-Ul;Jang, In-Hun;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.570-576
    • /
    • 2007
  • This paper presents a hexagon-based Q-leaning algorithm to find a hidden targer object with multiple robots. An experimental environment was designed with five small mobile robots, obstacles, and a target object. Robots went in search of a target object while navigating in a hallway where obstacles were strategically placed. This experiment employed two control algorithms: an area-based action making (ABAM) process to determine the next action of the robots and hexagon-based Q-learning to enhance the area-based action making process.

The Hidden Object Searching Method for Distributed Autonomous Robotic Systems

  • Yoon, Han-Ul;Lee, Dong-Hoon;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1044-1047
    • /
    • 2005
  • In this paper, we present the strategy of object search for distributed autonomous robotic systems (DARS). The DARS are the systems that consist of multiple autonomous robotic agents to whom required functions are distributed. For instance, the agents should recognize their surrounding at where they are located and generate some rules to act upon by themselves. In this paper, we introduce the strategy for multiple DARS robots to search a hidden object at the unknown area. First, we present an area-based action making process to determine the direction change of the robots during their maneuvers. Second, we also present Q learning adaptation to enhance the area-based action making process. Third, we introduce the coordinate system to represent a robot's current location. In the end of this paper, we show experimental results using hexagon-based Q learning to find the hidden object.

  • PDF

Strategy of Object Search for Distributed Autonomous Robotic Systems

  • Kim Ho-Duck;Yoon Han-Ul;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This paper presents the strategy for searching a hidden object in an unknown area for using by multiple distributed autonomous robotic systems (DARS). To search the target in Markovian space, DARS should recognize th ε ir surrounding at where they are located and generate some rules to act upon by themselves. First of all, DARS obtain 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to research for a target object while navigating in a un known hallway where some obstacles were placed. In the end of this paper, we present the results of three algorithms - a random search, an area-based action making process to determine the next action of the robot and hexagon-based Q-learning to enhance the area-based action making process.

Object tracking algorithm of Swarm Robot System for using SVM and Dodecagon based Q-learning (12각형 기반의 Q-learning과 SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • This paper presents the dodecagon-based Q-leaning and SVM algorithm for object search with multiple robots. We organized an experimental environment with several mobile robots, obstacles, and an object. Then we sent the robots to a hallway, where some obstacles were tying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and SVM to enhance the fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Analysis of Key Success Factors for Building a Smart Supply Chain Using AHP (AHP를 이용한 스마트 공급망 구축을 위한 주요 성공요인 분석)

  • Cheol-Soo Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.1-15
    • /
    • 2023
  • With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.

Prediction of Type 2 Diabetes Remission after Bariatric or Metabolic Surgery

  • Park, Ji Yeon
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.213-222
    • /
    • 2018
  • Bariatric surgery has evolved from a surgical measure for treating morbid obesity to an epochal remedy for treating metabolic syndrome as a whole, which is represented by type 2 diabetes mellitus. Numerous clinical trials have advocated bariatric or metabolic surgery over nonsurgical interventions because of markedly superior metabolic outcomes in morbidly obese patients who satisfy traditional criteria for bariatric surgery (body mass index [BMI] >$35kg/m^2$) and in less obese or simply overweight patients. Nevertheless, not all diabetes patients achieve the most desirable outcomes; i.e., diabetes remission after metabolic surgery. Thus, candidates for metabolic surgery should be carefully selected based on comprehensive preoperative assessments of the risk-benefit ratio. Predictors for diabetes remission after metabolic surgery may be classified into two groups based on mechanism of action. The first is indices for preserved pancreatic beta-cell function, including younger age, shorter duration of diabetes, and higher C-peptide level. The second is the potential for an insulin resistance reduction, including higher baseline BMI and visceral fat area. Several prediction models for diabetes remission have been suggested by merging these two to guide the joint decision-making process between clinicians and patients. Three such models, DiaRem, ABCD, and individualized metabolic surgery scores, provide an intuitive scoring system and have been validated in an independent external cohort and can be utilized in routine clinical practice. These prediction models need further validation in various ethnicities to ensure universal applicability.

Integrated Platform on the Basis of Heterogeneous Data to Support the Establishment of an Innovative Ecosystem for National High-Performance Computing: Focusing on Life Science & Public Health Area (국가 초고성능컴퓨팅 혁신 생태계 구축 지원을 위한 이종데이터 기반 통합 플랫폼: 생명·보건분야를 중심으로)

  • Do-Yeon Lee;Myoung-Ju Koh;Jae-Gyoon Hahm;Keun-Hwan Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To secure national future competitiveness, the Korean government announced the 『National Ultra-High Performance Computing (HPC) Innovation Strategy (2021.5.28.)』 and set three innovation strategy goals throughout establishing an innovation ecosystem. This study presented a heterogenous data-based strategic support framework that allowed to understand both the current status of domestic & foreign R&D areas and domestic industrial economy areas in terms of strategic fields related to ultra-high performance computing, and the empirical research was conducted in the life science and public health area. The HPC innovation ecosystem platform based on the connection of heterogeneous data (domestic R&D project-technology-industry-overseas R&D project) presented in this study provided useful and essential information that allowed establishing a specific action plan for the national HPC innovation strategy and contributing to vitalizing the innovation ecosystem. Since the evidence-based policy assumes that a more reasonable consensus is reached through a non-biased decision- making process among stakeholders, the proposed platform may contribute to enhancing policy momentum by increasing legitimacy and trust of planning of the national HPC strategy.

A Study on Cyber Operational Elements Classification and COA Evaluation Method for Cyber Command & Control Decision Making Support (사이버 지휘통제 의사결정 지원을 위한 사이버 작전요소 분류 및 방책 평가 방안 연구)

  • Lee, Dong-hwan;Yoon, Suk-joon;Kim, Kook-jin;Oh, Haeng-rok;Han, In-sung;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.99-113
    • /
    • 2021
  • In these days, as cyberspace has been recognized as the fifth battlefield area following the land, sea, air, and space, attention has been focused on activities that view cyberspace as an operational and mission domain in earnest. Also, in the 21st century, cyber operations based on cyberspace are being developed as a 4th generation warfare method. In such an environment, the success of the operation is determined by the commander's decision. Therefore, in order to increase the rationality and objectivity of such decision-making, it is necessary to systematically establish and select a course of action (COA). In this study, COA is established by using the method of classifying operational elements necessary for cyber operation, and it is intended to suggest a direction for quantitative evaluation of COA. To this end, we propose a method of composing the COES (Cyber Operational Elements Set), which becomes the COA of operation, and classifying the cyber operational elements identified in the target development process based on the 5W1H Method. In addition, by applying the proposed classification method to the cyber operation elements used in the STUXNET attack case, the COES is formed to establish the attack COAs. Finally, after prioritizing the established COA, quantitative evaluation of the policy was performed to select the optimal COA.