• Title/Summary/Keyword: area study

Search Result 55,508, Processing Time 0.086 seconds

An Analysis of Subject Competencies Applied in the Activity Tasks of the 'Human Develop ment and Family' Area in High School Technology & Home Economics Textbook Based on the 2015 Revised National Curriculum (2015 개정 교육과정 고등학교 기술·가정 교과서 '인간 발달과 가족' 영역 활동과제에 반영된 교과역량 분석)

  • Lim, Mo Seop;Choi, Seong Youn
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.3
    • /
    • pp.21-45
    • /
    • 2023
  • The purpose of this study was to analyze the curriculum competencies of relationship-forming ability and practical problem-solving ability reflected in the activity tasks corresponding to the content elements of 'Love and marriage', 'Preparation for parenthood', 'Pregnancy and childbirth', 'Child care', and 'Family culture and intergenerational relationship' in the 2015 revised high school technology & home economics textbooks. The data are 330 activity tasks from 12 kinds of high school technology & home economics textbooks. The sub-factors of the relationship-forming ability were selected as Respect for Diversity, Consideration and Care, Family Relationship and Community Spirit, Empathy Ability, Conflict Management, and Communication, and the sub-factors of practical problem-solving ability were selected as Practical Reasoning, Decision Making, Value Judgment, Critical Thinking, and Executive Power. Based on the analysis criteria, the results of the two analyses and the expert review are as follows. First, regarding both the core concepts 'Development' and 'Relationship', the share of relationship-forming ability was relatively higher than practical problem-solving ability, and conflict management and executive power were the least reflected. For the core concept 'Development', Family Relationship and Community Spirit and Critical Thinking were the most reflected sub-factors, and for the core concept 'Relationship', Consideration and Care and critical thinking were the most reflected sub-factors. Second, in the case of the relationship-forming ability, the examples of activity tasks across sub-factors of each subject competency were devised to understand diverse opinions and sentiments and to develop competencies to care for each other and maintain healthy family relationships. In the case of practical problem-solving ability, the tasks allowed students to objectively analyze the socio-cultural background underlying the real-life problem, explore alternatives, and apply in their own lives.

A Flora of Vascular Plants in Biryongsan Mt. and Baebawhisan Mt. (Gyeongsangbuk-do) (비룡산과 배바위산 일대(경상북도)의 관속식물상)

  • Ho Yeon Kang;Seon Jeong;Jae Young Kim;Hyeong Jun Jo;Gyu Young Chung
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.360-385
    • /
    • 2024
  • This study was carried out to clarify the distribution of vascular plants in Biryongsan Mt. (1,129 m) and Baebawhisan Mt. (967 m) (a.s.l., 36° 55'~37° 06' N, 129° 03'~29° 09' E), Gyeongsangbuk-do. The surveys were conducted 13 times from April 2019 to August 2022. The vascular plants of Biryongsan Mt. and Baebawhisan Mt. was consisted a total of 570 taxa based on the voucher specimens; 108 families, 334 genera, 506 species, 17 subspecies, 44 varieties, 3 forms. Among them, the Korean endemic plants were 12 taxa. The of number of threatened and near threatened plants, as National Red List of Vascular Plants in Korea designated by the Korean National Arboretum, were 8 taxa, comprising 1 endangered (EN), 3 vulnerable (VU), and 4 near threatened (LC) species. The number of floristic target plants designated by the Ministry of Environment was 104 taxa, including 10 of level IV and 28 of level III. The naturalized plants in this area were 42 taxa. Among 570 taxa, there were 403 edible plants, 461 medicinal plants, 221 industrial plants, 306 ornamental plants, and 17 taxa with unknown usefulness respectively.

Assessment of Farm-Gate Nitrogen Balance of Organic Hanwoo Farms at Different Recycling Farming Types (유기 한우 사육농장의 순환 유형별 질소 수지 평가)

  • Lim, Jin-Soo;Choi, Deog-Cheon;Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.2
    • /
    • pp.247-265
    • /
    • 2024
  • The aim of the study was to assess whole farm nitrogen (N)-balance in organic Hanwoo farms of different recycling types. N input, output and within-farm N flows were calculated as a farm-gate balance on 12 organic Hanwoo farms. The observed farms were divided into three groups: as (a) recycling farms, with a forage cultivation area (more than 0.1 ha), (b) semi-recycling farms (0.01-0.1 ha) and (c) with non-recycling farms (less than 0.01 ha). The self-sufficiency forage crops for animal feed was 44.4, 15.0, and 4.2% in recycling farms, semi-recycling farms and non-recycling, respectively. The recycling rate of compost was 98.8, 63.8, and 20.6% in recycling farms, semi-recycling farms and non-recycling farms, respectively. The annual farm-gate N surplus (input-output) per head was 42, 47, and 55 kg in recycling farms, semi-recycling farms and non-recycling, respectively. The mean annual N balance per head in recycling farms was less than 28% of non-recycling. The field nitrogen budgets showed 234, 1,161, and 5,476 kg N ha-1 year-1 in recycling farms, semi-recycling farms and non-recycling farm, respectively. N-surplus reductions of in recycling farms was 5-23 times lower compared to the semi-recycling farms and non-recycling farm. The nitrogen use efficiency (NUE) was 54, 36, and 29%, in recycling farms, semi-recycling farms, and non-recycling farm, respectively. Results showed that compost recycling through crop-livestock recycling farm is significant in the contributing to circulating N balance and to greater efficiency and productivity. The recycling organic Hanwoo farm had the low N balance and the high NUE. To reduce the N balance, we considered how to increase the amount of recycling by using self production compost. The self production forage crops was mainly considered to reduce the N balance by decreasing input of purchased feeds and increasing crop production and recycling rate of compost.

Effects of Cutting Condition on Quality of Nursery Plant and Fruit Yield in 'Sulhyang' Strawberry (삽목 조건이 '설향' 딸기의 묘소질 및 과실 수량에 미치는 영향)

  • Sang Woo Lee;Yong Hyuk Lee;Jeum Kyu Hong;Sung Hwan Choi;Soo Jeong Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.405-415
    • /
    • 2023
  • This study was conducted to investigate optimal conditions for cutting propagation of the strawberry cultivar "Sulhyang" through the collection methods of cuttings (runners tips), leaf number of cuttings, and cutting time. Cuttings were collected from the mother plant in the nursery bed (MP) and plants after fruit harvest (HP); the leaf number of cuttings was 0, 1, and 2, and the cutting time was at one-week intervals from June 4 to July 9. The survival rates for MP and HP cuttings were notably high, reaching 99.5% and 98.7%, respectively, but no significant difference was found. The number of roots were higher in MP cuttings, and there was no significant difference in crown and leaf growth. The fruit yields were 419.2 and 428.4 g, for MP and HP cuttings, respectively. The survival rates according to leaf number of cuttings were 98.1% and 98.3% for 1 and 2 remaining leaves, respectively, and remarkably lower at 25.3% for no remaining leaves. The root numbers were 26.0 and 26.3 for 1 and 2 remaining leaves, respectively, compared with 23.5 for no remaining leaves, with no significant differences in crown and leaf growth. The fruit yields were 424.4 and 421.5 g for 1 and 2 remaining leaves, respectively, and 396.7 g for no remaining leaves. The survival rates according to cutting time was over 97.2% in all cutting time without any difference in each treatment. The root, shoot, and crown of the nursery plant before planting showed the best growth in the cuttings on June 4 and 11, resulting in the highest fruit yields of 433.3 and 426.4 g, respectively, with the lowest yields at 384.5 g for cutting time on July 9. Both MP and HP materials proved suitable for strawberry cuttings. The optimal leaf number for cuttings was at least 1, and the optimal cutting time in Gyeongnam area was evaluated as around June 4-11.

Model Evaluation for Predicting the Full Bloom Date of Apples Based on Air Temperature Variations in South Korea's Major Production Regions (기온 변화에 따른 우리나라 사과 주산지 만개일 예측을 위한 모델 평가)

  • Jae Hoon Jeong;Jeom Hwa Han;Jung Gun Cho;Dong Yong Lee;Seul Ki Lee;Si Hyeong Jang;Suhyun Ryu
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.501-512
    • /
    • 2023
  • This study aimed to assess and determine the optimal model for predicting the full bloom date of 'Fuji' apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of 'Fuji' apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.

Appropriate Working Period and Storage Characteristics Based on Residual Leaf Length of Onion (Allium cepa L.) Harvested with a Blower-type Stem Cutter (송풍식 줄기절단기에 의한 적정 양파 잎 절단 시기 및 잔여 엽장에 따른 양파 저장 특성)

  • Byeonggyu Min;Jiyoung Son;Mijin Lee;Jinseong Moon;Juhee Baek;Jaecheol Seo;Jungho Shin;Seunggwi Kwon;Soonjung Hong;Sanghee Lee
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • This study was conducted to determine the optimal working conditions when a recently developed blower-type onion stem cutter is utilized for cutting onion leaves at harvest time. The June 20 leaf cutting treatment group had the highest leaf dryness among the treatment groups (leaf dryness: 66.3%; leaf moisture content: 50.5%); the residual leaf length was 6.7 ± 3.5 cm. It is considered to have the best mechanical leaf cutting performance among the treatment groups because it is included in the optimal range of 4-10 cm. The average working speed of mechanical onion leaf cutting using the stem cutter was 0.17 m·s-1, which is approximately 3.4 times faster than the average working speed of 0.05 m·s-1 in the human leaf cutting treatment group. This is expected to save approximately 2.6 hours compared to human labor (based on one person) when working on a 10a area using this machine. In addition, the incidence of damaged bulbs in the machine leaf cutting treatment group was 1.3%, compared to 0.0% in the manual leaf cutting treatment group. This suggests that the mechanical leaf cutting treatment group had a higher average onion bulb decay rate during storage than the manual leaf cutting treatment group. When the storage characteristics of each treatment group were examined, the decay rate by bulb part (leaf connected or root connected) after 8 months of storage was higher in the treatment group with a residual leaf length of less than 5.0 cm after mechanical leaf cutting than in the treatment with a residual leaf length of more than 5.0 cm. This is thought to be due to the fact that treatments with a residual leaf length of less than 5.0 cm are more susceptible to infection by pathogens that cause decay during storage than treatments with a residual leaf length of 5.0 cm or more. Based on the results of this experiment, performance target of the experimental machine (residual leaf length after operation: 5 cm), and existing research on the optimal residual leaf length for onion harvesting, it is recommended to cut onion leaves so that the residual leaf length is 5-10 cm when using the stem cutter.

Comparison of Seedling Quality of Cucumber Seedlings and Growth and Production after Transplanting according to Differences in Seedling Production Systems (육묘 생산 시스템 차이에 따른 오이 모종의 묘소질과 정식 후 생육 비교)

  • Soon Jae Hyeon;Hwi Chan Yang;Young Ho Kim;Yun Hyeong Bae;Dong Cheol Jang
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.88-98
    • /
    • 2024
  • This study provides basic data on the growth and production of seedlings produced in plant factories with artificial lighting by comparing seedling quality, growth and fruit characteristics, and production after transplanting cucumber seedlings according to environmental differences between plant factories with artificial lighting and conventional nurseries in greenhouse. The control group consisted of greenhouse seedlings (GH) grown in the conventional nursery before transplanting. Plant factory to greenhouse seedlings (PG) were grown for 9 days in a plant factory with artificial lighting and for 13 days in an conventional nursery. Plant factory seedlings (PF) were grown in a plant factory with artificial lighting for 22 days until planting. In terms of seedling quality, PFs had the highest relative growth rate and compactness and the best root zone development. After transplanting PFs tended to grow faster, the first harvest date was 2 days earlier than that of GHs, and the growing season ended 1 day earlier. The female flower flowering rate of the PFs was high, and the fruit set rate was of PF the lowest. The production per unit area was highest for PFs at 10.23kg Performance index on the absorption basis, the most sensitive chlorophyll fluorescence parameter, was highest at 4.14 for PFs at 4 weeks after transplantation. By comparing the maximum quantum yield of primary PS II photochemistry and dissipated energy flux per PS II reaction center electron at 4 weeks after transplantation, PFs tended to be the least stressed. PFs had the best seedling quality, growth, and production after planting, and fruit quality was consistent with that of greenhouse seedlings. Therefore, plant factory seedlings can be used in the field.

Effect of Root Zone Volume on Productivity of Shoots in Multi-layer Cultivation of Rosemary (로즈마리 다단재배 시 근권부 용적이 어린순 생산성에 미치는 영향)

  • Myeong Suk Kim;Jung Seob Moon;Song Hee Ahn;Dong Chun Cheong;Min Sil Ahn;So Ra Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.3
    • /
    • pp.156-162
    • /
    • 2024
  • This study was conducted to investigate the effect of rooting volume on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10 cm middle cuttings from which the common rosemary (Rosmarinus officinalis L.) apical bud was removed were planted in a 128-hole tray, rooted, and then transplanted into pots of 125, 200, 550, 750, 1,300, and 2,000 mL to determine the growth characteristics and quantity of young shoots of 1-year-old and 2-year-old rosemary. In the case of 1-year-old rosemary, there was no clear difference in initial growth (30 days after transplanting) between treatments in pot size larger than 550 mL, in the case of 2-year-old rosemary, growth tend to be proportional as the pot became larger. The fresh weight of the underground part of 1-year-old and 2-year-old rosemary was the lowest at 6.9 g and 24.4 g, respectively, when surveyed on July 25 in a 550 mL container, and 10.3 g and 24.9 g, respectively, when surveyed on November 24, and there was a difference between treatments in containers of 750 to 2,000 mL. On the other hand, in the case of 1-year-old rosemary, the fresh weight of the above-ground part increased as the pot became larger, but there was no statistical difference above 1,300 mL, and the fresh weight of 2-year-old rosemary was also significantly higher as the pot became larger. The quality of young shoots was the best for 1-year-old rosemary in a pot of 2,000 mL, but for 2-year-old rosemary, there was a difference in quality depending on the season. Shoot productivity per unit pot was highest at 1,300 mL, but when converted to per unit area, the best was observed at 750 mL. Therefore, the most suitable pot size for intensive production through multi-layer cultivation of rosemary young shoots is judged to be 750 mL (12.5 × 11.5 cm).

Productivity Evaluation of Rosemary Shoots using Artificial Light Sources in Multi-layer Cultivation (다단재배에서 인공광원을 이용한 로즈마리 어린순의 생산성 평가)

  • Myeong Suk Kim;Jung Seob Moon;Song Hee Ahn;Dong Chun Cheong;Min Sil Ahn;So Ra Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • This study was aimed to investigate the effects of layer-by-floor environmental conditions and lower shelf supplemental lighting on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10-cm cuttings from stock plants of common rosemary (Rosemarinus officinalis) were planted in a 128-hole tray, rooted, and then transplanted into pots of 750, 1,300, and 2,000 mL. Afterwards, they were placed on multi-layer shelves (width × length × height: 149 × 60 × 57 cm, 3-layer) in a two-linked greenhouse and cultivated using the sub-irrigation. The productivity of young shoots by layer of the multi-layer shelf was the highest on the third floor (top floor), but productivity decreased sharply after September due to stem lignification caused by excessive light during the summer. Conversely, the lower two layers exhibited faster growth rate of young shoots until the late cultivation period, but the quality decreased due to stem softening and leaf epinasty. To address the excessive light problem on the third floor during the summer, shading was implemented at 30% opacity in July and August, resulting in a 210% increase in rosemary young shoots count and a 162% increase in fresh weight per unit area compared to the unshaded control. To improve the lighting deficiency on the lower layer, supplemental lighting with LED at 30 W increased rosemary young shoot harvest by 168% from June to September compared to no supplemental lighting, but it decreased productivity after September. Therefore, when growing rosemary in multi-layer, it is judged that intensive production of young shoots is possible if the third floor (top layer) is shaded with 30% of light from July to August to prevent stem lignification, and the lower layer is temporarily supplemented with LED 30 W from June to September to increase young shoot growth.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF