• 제목/요약/키워드: area specific flow rate

검색결과 85건 처리시간 0.029초

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M.;Patel, Hemang;Manocha, L.M.
    • Carbon letters
    • /
    • 제11권3호
    • /
    • pp.201-205
    • /
    • 2010
  • Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.

사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측 (Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels)

  • 전세계;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

TiO2 코팅 석탄회 복합체의 기상 Acetaldehyde 광분해 특성 (Photocatalytic Degradation of Gaseous Acetaldehyde through TiO2-Coated Fly Ash Composites)

  • 신대용;김경남
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.43-47
    • /
    • 2008
  • The photocatalyst of $TiO_2$ coated on a fly ash composites (TCF) was prepared from precipitant dropping method to remove the acetaldehyde by photocatalytic reaction. The TCF were characterized by crystal aize, crystal structure and specific surface area. The photodegradation of acetaldehyde has been investigated using a UV-illuminated fixed photocatalytic reactor with TCF catalyst and P-25 catalyst in gas phase. The effect of photodegradation reaction conditions, such as initial concentration of acetaldehyde, concentration of oxidant in mixed gas and the light intensity on the photodegradation of acetaldehyde were investigated. P-25 catalyst showed the highest photodegradation of acetaldehyde and anatase $TiO_2$ coated TCF showed higher decomposition rate than rutile coated TCF. The photodegradation rate of acetaldehyde increased with the decrease of flow rate, initial concentration of acetaldehyde ($C_i$) and water vapor, however, it was increased with the increas of UV light intensity. The optimum conditions were weight of TCF=10 g, flow rate=50 ml/min $C_i$=100 ppm, concentration of oxygen=20%, concentration of water vapor=100 ppm.

평판형 고체산화물 연료전지의 CFD 성능해석에서 공기유량변화의 영향 (Effect of Air Flow Rate on the Performance of Planar Solid Oxide Fuel Cell using CFD)

  • 김단비;한경호;윤도영
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.172-181
    • /
    • 2015
  • 고체산화물 연료전지는 다양한 응용분야에서 대체에너지로서 각광받고 있다. 본 논문은 평판형 anode 전극으로 들어가는 공기유량에 따른 SOFC의 I-V 그래프 특성에 대해 연구하였다. 본 연구를 위해, Butler-Volmer 반응속도 식이 상용 CFD코드인 FLUENT에 적용되었다. CFD로부터 얻어진 결과값은 문헌으로부터 참고한 실험데이터와 0.4 V ~ 1 V 범위에서 I-V 분극곡선이 잘 맞는 것을 보여줌으로써 그 유효성을 확인하였다. 연료전지의 수치적 계산은 각각 다른 유량조건 하에서 3D 구조를 이용하여 수행하였다. 결과는 수소, 산소 그리고 물의 농도 분포의 항목으로 제시하였다. 전산모사와 그 결과들은 Butler-Volmer 방정식을 사용자 정의 함수로 적용한 CFD기법이 공기 유량과 비표면적에 대한 조건을 확인하는데 사용될 수 있고, 작동조건 연구를 위한 지침이 됨으로써 연료전지 시스템의 성능을 향상시킬 수 있음을 보여준다.

금호강 유역에서의 4-nitrophenol 배출 특성과 오염원 기여도 모의 연구 (Study on the simulation of emission characteristics and sources contribution of 4-nitrophenol in the Geumho River)

  • 박경덕;양득석;이인정;김일규
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.43-53
    • /
    • 2019
  • In the Geumho River, 4-nitrophenol has been detected, thus it is necessary to investigate the contamination sources in order to prevent the release of this compound. However, the research to estimate the potential source is regarded as complicated research. In this study, the distributions of 4-nitrophenol were simulated and the contribution of the potential sources was estimated using a numerical model(HydroGeoSphere; HGS) and the measuring data of 4-nitrophenol from 2013 to 2017. The altitude data, the land cover data, the flow rates of the tributaries and wastewater treatment plants, and the decay rate of 4-nitrophenol was used as the input data. The results of this research showed that the contribution rates of potential contamination sources in the upstream area were higher than that of the downstream area. Most of the upstream area is the agricultural area, it seemed that 4-nitrophenol was originated from the pesticides. In order to achieve more specific location of sources, an intensive investigation in the upstream is required.

MODFLOW 모형을 이용한 부곡온천지역 지하수 유동해석 (An Analysis of Groundwater Flow at Bugok Area Using MODFLOW)

  • 정상옥;이영대;민병형
    • 물과 미래
    • /
    • 제27권1호
    • /
    • pp.79-88
    • /
    • 1994
  • 부곡온천 지역의 지속적인 지하수위 하강에 대비하여 온천지역의 지하수 흐름을 3차원 모형인 MODFLOW를 이용하여 해석하였다. 연구 결과를 요약하면 다음과 같다. 1) 변수보정 과정에서 대수층의 투수계수는 0.0134m/d로, 저류계수는 0.020으로 나타났으며, 모형이 추정한 장기간의 지하수위 변동은 관측치와 잘 맞았다. 2) 여러 가지 시나리오에 대하여 1년간의 기간에 대한 시뮬레이션을 한 결과 가장 나쁜 조건인 년간 함양량이 작고 년간 양수량이 큰 경우에는 시뮬레이션 기간의 초기에 비해 말기에 지하수위가 저하되었으나 그 외의 경우에는 말기의 수위가 초기의 수위보다 낮아지지 않았다. 3) 온천지역의 안전채수량은 함양율의 크기와 지하수위의 고저에 크게 영향을 받는 바, 양수량의 결정은 년중 지하수위가 가장 낮은 4월경에 과다한 수위저하가 발생하지 않도록 하여야 한다.

  • PDF

도시 소하천에서 유속, 비표면적에 따른 사상형 부착조류의 Chlorophyll-a 변화 (Variation of Filamentous Periphyton Chlorophyll-a in accordance with Water Velocity and Specific Surface Area of Media in Small Urban Stream)

  • 안창혁;주진철;이새로미;오주현;안호상;송호면
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.551-558
    • /
    • 2013
  • The feasibility of water supply as in-stream flow for Mangwall stream was analyzed in terms of water quality and cultivation periphyton using two different types of water resources (e.g., surface water and bank filtration from Han River basin) and three different types of media (e.g., tile, concrete and pebble). The concentrations of organic and inorganic contaminants from the bank filtration were lower than those from surface water by 17.5 - 55.0%. Using water samples collected from Mangwall stream, surface water, and bank filtration, chlorophyll-a, phaeopigment, and growth rate of periphyton were investigated. During 30 day incubation for each water sample, it was observed that filamentous cyanobacteria, Oscillatoriaceae, accounted for 98%, and water velocity of 5 cm/s was optimum for the in situ filamentous cyanobacteria growth. Also, it was deducted for water velocity and chl-a to have an inverse correlation. Meanwhile, the greater the specific surface area of media, the higher the concentration of chl-a. From these results, both water velocity and specific surface area of media should be considered as an combined parameter to deter the growth of filamentous cyanobacteria.

폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구 (An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator)

  • 민지현;신동훈;최상민
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.