• Title/Summary/Keyword: area of a rectangle

Search Result 96, Processing Time 0.027 seconds

A New Face Tracking Method Using Block Difference Image and Kalman Filter in Moving Picture (동영상에서 칼만 예측기와 블록 차영상을 이용한 얼굴영역 검출기법)

  • Jang, Hee-Jun;Ko, Hye-Sun;Choi, Young-Woo;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2005
  • When tracking a human face in the moving pictures with complex background under irregular lighting conditions, the detected face can be larger including background or smaller including only a part of the face. Even background can be detected as a face area. To solve these problems, this paper proposes a new face tracking method using a block difference image and a Kalman estimator. The block difference image allows us to detect even a small motion of a human and the face area is selected using the skin color inside the detected motion area. If the pixels with skin color inside the detected motion area, the boundary of the area is represented by a code sequence using the 8-neighbor window and the head area is detected analysing this code. The pixels in the head area is segmented by colors and the region most similar with the skin color is considered as a face area. The detected face area is represented by a rectangle including the area and its four vertices are used as the states of the Kalman estimator to trace the motion of the face area. It is proved by the experiments that the proposed method increases the accuracy of face detection and reduces the fare detection time significantly.

Optical Design of CubeSat Reflecting Telescope

  • Jin, Ho;Pak, Soojong;Kim, Sanghyuk;Kim, Youngju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.110.1-110.1
    • /
    • 2014
  • The optics of Space telescope is one of the major parts of space mission used for imaging observation of astronomical targets and the Earth. These kinds of space mission have a bulky and complex opto-mechanics with a long optical tube, but there are attempts have been made to observe a target with a small satellite in many ways. In this paper, we describe an optical design of a reflecting telescope for use in a CubeSat mission. For this design, we adopt the off-axis segmented method of astronomical observation techniques based on the Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and a secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can obtain a $0.3{\times}0.2$ degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation. Based on this conceptual design, we will keep trying to study more for astronomical observation with Attitude control system.

  • PDF

Optical Design of a Reflecting Telescope for CubeSat

  • Jin, Ho;Lim, Juhee;Kim, Youngju;Kim, Sanghyuk
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.533-537
    • /
    • 2013
  • Space telescope optics is one of the major parts of any space mission used to observe astronomical targets or the Earth. This kind of space mission typically involves bulky and complex opto-mechanics with a long optical tube, but attempts have been made to observe a target with a small satellite. In this paper, we describe the optical design of a reflecting telescope for use in a CubeSat mission. For this design we adopt the off-axis segmented method for astronomical observation techniques based on a Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and the secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can yield a 0.383 degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation.

Riser Control Technology for Rectangle Cast Iron Blocks Applying the Heat Control Method of the Heater

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.797-803
    • /
    • 2024
  • In this study, a device was used to conduct heat to the riser by combining a cylindrical heater with the riser to maintain the molten metal above a certain temperature while continuously compensating for the shrinkage phenomenon that occurs as the molten metal solidifies in the product area. A cylindrical heater is coupled to the riser portion of the upper part of the upper mold, and a heater portion mold is formed between the riser and the cylindrical heater. The cylindrical heater is connected to a controller to control the temperature and a power supply. The cylindrical heater conducts a heat source to the molten metal located on the riser and can continuously compensate for the shrinkage of the cast product by heating the molten metal located on the riser or maintaining it at a constant temperature. The block without a riser had a large shrinkage cavity at the top, and the top became concave due to shrinkage. There is no shrinkage in the block with the Ø100 mm riser. Blocks that did not apply heaters to the Ø50 mm riser experienced shrinkage around the riser and also at the bottom. There is no shrinkage in the block with the Ø50 mm riser to which the heater was applied.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

A Study on Folded Monopole Antenna with Spiral Shape for Wireless DVI Dongle Applications (무선 DVI 동글장치를 위한 스파이럴 구조를 갖는 폴디드 모노폴 안테나에 관한 연구)

  • Lee, Jae-Choon;Lee, Yun-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.72-75
    • /
    • 2016
  • In this paper, we proposes a internal antenna for wireless DVI dongle device using the folded monopole structure. The proposed antenna uses a basic structure of spiral and monopole. The antenna optimized for parameters length, gap, width, and rectangle of folded monopole antenna using the spiral structure. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The DVI dongle size of the proposed antenna is $50{\times}40{\times}1.6mm$, and the size of the antenna area is $10{\times}40mm$. There is a value of return loss less then -10dB in 2.4GHz and 5.8GHz, band and the maximum antenna gain is -4.13dBi. The utilization possibility of the wireless DVI Dongle antenna have a folded monopole with spiral shape could be confirmed according to compare and analyze the simulation and measurement data.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

A motion control of robot manipulator by hand glove gesture (손동작 인식 로봇 동작 제어)

  • An, Hyo-min;Lee, Yong-Gyu;Kim, Hyung-Jong;Hyun, Woong-Keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.566-569
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand golve gesture and implemented a system to remotely control the robot. The system consists of a camera and a controller that controls robot motion by hand position gesture. The camera recognizes the specific color of the glove and outputs the recognized range and position by including the color area of the glove. We recognize the velocity vector of robot motion and control the robot by the output data of the position and the detected rectangle. Through the several experiments, it was confirmed that the robot motion control was successfully performed.

  • PDF

Rmap+: Autonomous Path Planning for Exploration of Mobile Robot Based on Inner Pair of Outer Frontiers

  • Buriboev, Abror;Kang, Hyun Kyu;Lee, Jun Dong;Oh, Ryumduck;Jeon, Heung Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3373-3389
    • /
    • 2022
  • Exploration of mobile robot without prior data about environments is a fundamental problem during the SLAM processes. In this work, we propose improved version of previous Rmap algorithm by modifying its Exploration submodule. Despite the previous Rmap's performance which significantly reduces the overhead of the grid map, its exploration module costs a lot because of its rectangle following algorithm. To prevent that, we propose a new Rmap+ algorithm for autonomous path planning of mobile robot to explore an unknown environment. The algorithm bases on paired frontiers. To navigate and extend an exploration area of mobile robot, the Rmap+ utilizes the inner and outer frontiers. In each exploration round, the mobile robot using the sensor range determines the frontiers. Then robot periodically changes the range of sensor and generates inner pairs of frontiers. After calculating the length of each frontiers' and its corresponding pairs, the Rmap+ selects the goal point to navigate the robot. The experimental results represent efficiency and applicability on exploration time and distance, i.e., to complete the whole exploration, the path distance decreased from 15% to 69%, as well as the robot decreased the time consumption from 12% to 86% than previous algorithms.

An Understanding of Brousseau's Theory about the Didactical Situations and Application to Measurement Teaching (교수학적 상황론의 이해와 측정 지도에의 적용)

  • 윤나미;이종희;임재훈
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.2
    • /
    • pp.473-491
    • /
    • 1999
  • The learning of mathematics happens in some situations. It is natural that students should learn mathematics in more appropriate situations. But, so far It has been hardly studied about concrete situation and milieu where math can be successfully taught. In today's math education, the situation of education as a external circumstance become realized more and more importantly with influence of open education. But they don't embody situation as an internal circumstance where the intrinsic concept of mathematics can be obtained. We started this thesis from this tried to answer it on the basis of Brousseau's question, have theory about the didactical situations. One of the purpose of this study is to understand the theory of didactical situations, which focuses on how we can elaborate situations which really make a mathematical notion function. In this study, It is attempted clarify some concepts of the theory of didactical situations. The other is to discuss about what the theory of didactical situations suggests us in math zeducation. The method of math teaching and learning and the teacher's role were discussed in the viewpoint of Brousseau's theory. Finally, We elaborated and presented some didactical situations which make the notion of the area of rectangle.

  • PDF