• Title/Summary/Keyword: area measurement

Search Result 4,002, Processing Time 0.033 seconds

Automation of Skin Allergy Test using Fuzzy Set (Fuzzy Set을 이용한 피부반응 검사의 자동화 연구)

  • Shim, Chul;Jeong, Byeong-Sun;Lee, Myeong-Ku;Park, Mi-Gnon
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.43-46
    • /
    • 1990
  • Modern society is prevailed a lot of allergies. So, the allergy test is very important. There are many kinds of allergy test. A doctor usually uses skin allergy test among many allergy tests. However, little standadization and objectivity of grading-standard has been established in the skin allergy test. A measurement of the reaction area has been a major objective to perform skin allergy test. Recently, a doctor's method is to measure the reaction area after drawing a line that represents the reaction area on the skin. But this method differs slightly from the real reaction area and individual doctor's measurement is different, because the edge of the reaction area is obscure. In this paper, we propose a algorithm which is able to detect vague edges using the fuzzy set. The algorithm that detects the line and curve is proposed first. Here, the maximum value is calculated by comparing the membership function of the line and curve seperately. We also encode the direction of the line and curve by using 8-direction code. Then, we calculate the reaction area by measuring the pixels which are inside the reaction area. And finally the Allergy grade is decided by grading-standard, and we accomplish faster, the 80re accurate and objective allergy grade decision.

  • PDF

Measurement and Scale Effects of Digitized Virtual Human Head

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.1-89
    • /
    • 2001
  • Measurement of complex surfaces without touching is desirable in several fields. This arises mainly for measurement of complex surfaces including those surfaces that deform during touch. Our research presented in this paper describes the use of a 3D digitizer for scanning 3D objects. The use of such a device, in addition to proper calibration, requires proper scaling in all three dimensions. We propose measurement techniques to measure various aspects of the surface circumference, area and volume. We also present experiments from using a 3D Minolta digitizer for measuring 3D human heads.

  • PDF

Noise Measurement Method Development and Correlation Analysis According to Measurement Location of Small Unmanned Robot (소형 무인 로봇의 소음 측정법 개발 및 측정 장소에 따른 상관성 분석)

  • Ok, Jinkyu;Park, Eunjoo;Park, Minsu;Lee, Myungchun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.633-638
    • /
    • 2017
  • The small unmanned robot developed in this paper can perform tasks such as surveillance and reconnaissance in the battle field. The noise generated during the operation of the robot may expose the operation area. Therefore, in this study, we developed a method to quantitatively measure the noise of the developed small unmanned ground robot. The criteria for noise measurement in indoor and outdoor are presented. It was used for statistical verification method to verify the reliability of the developed noise measurement method. The noise was measured at different places, and the correlation was analyzed. Thus, we proposed a method to predict the noise level in the operation area where the robot is operated by the noise test data measured during the development process.

A Case Study on the Feed-Back Analysis and the Reinforcement Plan using the Measurement Data of Excavation Site close to the Existing Underground Box (기존 지하 Box 근접 굴착공사 현장의 계측결과를 이용한 역해석 및 보강방안의 적용 사례)

  • Lee, Jung-Hee;Noh, Won-Seok;Jeong, Soon-Ig;Kim, Wan-Jong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.445-456
    • /
    • 2010
  • Massive underground excavation can be carried out recently due to the technical development of the excavation for retaining wall. Feed-back analysis using field measurement results is recommended to secure the stability of the construction because calculated values at stages of the design and the construction are uncertain. Reinforcement plan should be established based on the result of it. This study deals with the underground excavation site, which is under construction and is close to structure(subway) at downtown area. The result of feed-back analysis on the measurement data of displacement at multi-soil layers was reflected to make a plan for safe construction. This case study can be useful information for contingency plan on abnormal displacement which can be occurred at similar underground excavation.

  • PDF

The Problems in the Measurement of DC Potential on Meridian Skin Area (경락노선상 직류 전위 측정에서의 문제점)

  • Heo, Ik-Beom;Lee, Woo-Cheol;Lee, Yoo-Jeong;Yin, Chang-Shik
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.9 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Background and purpose: The measurement of direct current (DC) potential on skin area of meridian has recently been adopted to explore the electrophysiological characteristics of meridian system, But there exists two problems to be explained; the entity of the DC potential to be measured and the characteristics of electrode gel interface of measurement system, It is not clear whether the DC potential reflect, at least hypothetically, the entity of meridian, and if there exist any unstable factor in the DC potential measurement system. Methods: In this study, we designed an electronic circuit model of skin and applied known DC potential sources $({\pm}10.75mV,\;0mV)$ to the electrode interface of the skin model. Results: The result showed that the measured DC potential changed according to the time, and the same phenomenon was observed when the electrode gel was replaced with an electric condenser. It is suggested that the measurement of DC potential on electrode gel interface is very difficult and produces unstable values due to the capacity effect of electrode gel. Conclusion: Further studies on the DC potential evaluation in the context of meridian study should consider and bypass this problem.

  • PDF

Changes of Facial Temperature and Blood Flow Rates by Treatment of Miso Facial Rejuvenation Acupuncture (미소안면침이 안면 피부 온도와 혈류량에 미치는 영향)

  • Kim, Tae Yeon;Bak, Jong Phil;Kim, Yong Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • To investigate the effects of facial temperature and blood flow rates generated by Miso Facial Rejuvenation Acupuncture treatment. Ten women in their twenties to fifties with no skin diseases were recruited. Miso Facial Rejuvenation Acupuncture(MFRA) was performed on the both sides of their face. We measured their facial temperature using Digital Infrared Thermal Imaging(DITI) and blood flow rates using Laser Doppler Perfusion Imaging(LDPI) at pre-treatment, immediately, twenty and sixty minutes after treatment. We analyzed data using student's t-test(p<0.05). After MFRA treatment, facial temperature on the measurement area increased immediately from $30.5{\pm}1.0^{\circ}C$ to $31.5{\pm}1.0^{\circ}C$, a statistically significant increase. Sixty minutes after treatment, facial temperature on the measurement area decreased a little bit($30.2{\pm}0.6^{\circ}C$), but there was no statistical significance. After MFRA treatment, facial blood flow rates on the measurement area increased immediately from $165.1{\pm}52.3$ PU to $342.7{\pm}51.3$ PU, a statistically significant increase. Sixty minutes after treatment, facial blood flow rates measurement area were recovered almost at the same level as before treatment. MFRA treatment could increase facial temperature and blood flow rates.

Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer (LCD 디스플레이용 색채계 렌즈에 관한 비결상 광학설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.239-244
    • /
    • 2011
  • We introduce Gaussian (or paraxial) optics that can be successfully applied to design, for use in a color analyzer, a non-imaging optical system on a measurement probe for LCD display. The color analyzer is used to decompose colored lights leaving from some measurement area on the LCD display to red, green, and blue. The color analyzer must include a condenser lens whose purpose is to gather colored lights to illuminate a small area on the sensor. In order to satisfy a reduction ratio between the measurement area and the sensing area with a non-imaging condition, a condenser lens is analytically treated by means of Gaussian optics so that good understanding of the non-imaging condenser lens is achieved as a good design is derived. As a result, the technique shows the necessity of analytical treatment in contrast to the design approach using only commercial software such as CODE-V, Light-Tools, and others. Of course, CODE V and Light-Tools are also utilized in this paper to confirm and complete the Gaussian optical design.

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

Distortion Correction in Magnetic Resonance Images on the Measurement of Muscle Cross-sectional Area (자기공명영상을 이용한 근육 단면적 측정법의 활용을 위한 영상왜곡보정)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Park, Ji-Won;Han, Bong-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Purpose: The purpose of this study is to explore the importance of the image distortion correction in the cross sectional area measurement for the iliopsas muscle, tensor fasciae latae muscle, gluteus maximus muscle and the knee extensor muscles, by using (magnetic resonance imaging) MRI. Methods: This study was performed using an open 0.32T MRI system. To estimate the image distortion, T1 images for an AAPM homogeneity/linearity phantom were acquired, and the region in which the maximum geometric distortion was less than or equal to the pixel size (1.6 mm) of the images, it was defined as the distortion correction-free region. The T2 images for a human subject's pelvis and thigh in normal positions were obtained. Then, after the regions of interest in the pelvis and thigh were moved into the distortion correction-free region, T2 images for the pelvis and thigh were scanned with the same imaging parameters used in the previous T2 imaging. The cross-sectional areas were measured in the two T2 images that were obtained in the normal position, and the distortion correction-free region, as well as the area error caused by geometric image distortion was calculated. Results: The geometrical distortion is gradually increased, from the magnet center to the outer region, in axial and coronal plane. The cross-sectional area error of gluteus maximus muscle and the knee extensors was as high as 9.27% and 3.16% in before and after distortion correction, respectively. Conclusion: The cross-sectional area of the muscles that suffered from the geometrical distortion is necessary to correct for the estimation of the intervention.

A Study on Digital Image Processing Algorithm for Area Measurement of an Object Image by the Hierarchical Angle-Distance Graphs (계층적 각-거리 그래프를 이용한 물체 면적 측정을 위한 디지털 영상처리 알고리즘에 관한 연구)

  • Kim Woong-Ki;Ra Sung-Woong;Lee Jung-Won
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.83-88
    • /
    • 2006
  • Digital image processing algorithm was proposed to measure the area inside of an object image using angle-distance graph used to analyze the pattern of an object in the digital image processing techniques. The first angle-distance graph is generated from a point inside of an object area. The second angle-distance graphs are generated for the areas missed in the first graph by extracting the positions with large gradient in the first angle-distance graph. The order of the graph increases according to the complexity of an object pattern. Size of the area inside of an object boundary is measured by integrating square of distance multiplied by angle for each area from the hierarchical angie-distance graphs.