수치표고모델(DEM, Digital Elevation Model)을 컴퓨터를 이용하여 자동으로 생성할 때 입체영상매칭(stereo matching) 연산은 많은 수행시간이 소요된다. 매칭연산은 일반적으로 상관계수(correlation)에 의한 방법이 사용되고 있으며, 매칭점 분포가 균등한 지역기반방식(area-based method)이 주로 이용되고 있다. 본 논문에서는 지형을 식별하여 매칭연산에서 검색영역(search area)과 기준윈도우(mask window)의 크기를 조정하여 효율적인 매칭을 수행하는 방안을 제시하였다. 영상을 분할하기 위하여 경계보호평활화 필터(edge-preserving smoothing filter)를 사용하여 전처리를 수행하였으며, 필터를 거친 영상에 대해서 영역성장 알고리듬을 적용하였다. 분할된 영역은 MRF(Markov Random Field) 모델에 의한 식별과정을 통하여 산악, 평야, 수계지역으로 식별된다. 영상매칭은 예비시차(predicted parallex) 계산과 상세매칭(fine matching)의 두 단계를 거치며, 예비시차를 이용하여 상세매칭단계에서 검색영역의 위치를 결정한다. 검색영역과 기준윈도우의 크기는 화소에 대한 지형식별정보에 의해 결정된다. 주변화소와 시차가 유사한 평야지역과 수계지역의 검색영역을 축소함으로서 매칭연산시간을 단축시켰다. 대전-금산지역의 $10km{\times}10km(1024{\times}1024)$ 영상을 4개 사용하여 실험한 결과 지형식별정보를 이용하지 않았을 경우보다 영상매칭 수행시간이 $25%{\times}35%$정도 단축시킬 수 있음을 보였다.
수치사진측량의 정확도는 사용되는 영상의 해상력에 의해서 제약을 받으므로, 영상의 해상력이 향상되어야 함은 자명한 이치이다. 용량이 확대된 CCD 장치로 하드웨어를 구성하는 방법이나, 센서를 움직여 부화소의 양을 미리 결정하므로써 고 해상력 영상을 획득하는 방법은 가격이 매우 고가이므로 저렴한 비용으로 영상의 해상력을 향상시킬 수 있다면 이는 매우 중요한 의미를 지닌다. 본 연구에서는 가격이 저렴한 수치사진기로 영상을 획득하고, 다중 수치영상을 영역정합에 의한 최소제곱방법으로 정합하여 저 해상력 영상의 해상력을 강화시키고자 한다. 연구결과 수치영상의 해상력이 크게 향상되었으므로 향후 경제적으로 가격 경쟁력이 있는 수치사진측량이 가능함은 물론 그 활용이 널리 기대된다.
최근 들어 개인용 컴퓨터 성능의 향상과 인터넷 기술의 발전에 따라서 이미지 모자익은 가상 환경 구축, 관광, 광고, 의료 영상 등, 많은 응용 분야에서 관심을 모으고 있다. 이미지 모자익의 주된 문제점은 이미지들 간의 정확한 대응점을 찾는 것이다. 그러나 기존의 대부분의 모자익 기법들은 정확한 대응점을 찾기 위해서 복잡한 계산과 많은 처리 시간을 요구했으며 모자익 이미지 생성을 위해 사물이나 배경 주위를 360$^{\circ}$ 회전하면서 여려 차례 반복 촬영을 해야 하는 어려움을 가지고 있었다. 본 논문에서는 일반 비디오 카메라를 이용하여 단 한번의 촬영에 의해 생성된 연속 프레임을 사용하였고 프레임간의 모자익에 있어서 방향성을 고려한 새로운 방법의 3단계 블록매칭 방법을 적용함으로써 전체적인 모자익 처리 속도를 단축하는 방법을 제안한다. 실험 결과에 의하면 본 논문에서 제안된 방법이 기존의 블록매칭 방법인 전역 탐색이나 K단계 탐색에 비하여 보다 효과적임을 알 수 있었다.
본 연구에서는 항공사진과 LiDAR 데이터를 융합하여 항공사진에 나타난 건물의 형상을 표현하는 3차원 선형정보를 추정하기 위하여 두 가지 과정을 수행하였다. 첫째, LiDAR 데이터를 영상과 같은 2D의 투영된 데이터로 만들었다. 이를 위하여 LiDAR 데이터의 특성상 정보가 부족한 건물경계 지역에서 가시성 문제를 해결하기 위해, 가상점을 추가한다. 수정된LiDAR데이터를 불규칙 삼각망으로 구성하고, 영상에서의 가시 삼각형을 판단하여, 영상화소값마다 삼각망 정보를 참조할 수 있게 한다. 둘째, 추출된 가시지역 정보와2D불규칙삼각망을 결합하여 입체영상으로부터3차원 선분을 추출하였다.입체영상에 존재하는 선분은 TIN기반의 정합방법을 사용하였다. TIN기반의 정합조건은 기존의 공액기하 사변형 조건보다 에지정합쌍 탐색율을 약 20% 향상시킬 수 있었다.
본 연구는 수치사진측량학과 전산기 시각 분야의 연구를 통하여 발전하고 있는 영상정합기법을 적용하여 사진지표의 관측과 위치결정을 자동화하는데 목적이 있다. 이러한 자동화과정에서 주된 문제점은 계산을 수행하는데 있어서의 시간을 최소화하고 위치결정의 정확도를 높이는 것이다. 본 연구에서는 스캐닝과정과 기준점의 절대적인 위치를 구하는 과정을 제외하고 영상 정합기법과 영상처리 기법을 이용하여 내부표정 과정을 자동화하였다. 본 연구에 의해서 개발된 체계를 근거리사진측량에 의한 결과를 적용하였으며 결과를 분석한 결과 최대 54%까지 계산시간이 절감되었다. 내부표정과정동안 사진지표의 관측에 대해서, Laplacian of Gaussian 변환과 휴 변환을 각각 영상의 중심점의 정확한 결정을 위하여 적용하였으며, 상관계수영상정합과 최소제곱 영상정합기법을 사진지표의 정확한 위치결정을 위하여 사용하였다. 영상피라미드의 개념을 사진지표의 자동 관측과정에 적용하여 계산시간을 절감할 수 있었다.
The practical use of the particle image velocimetry(PIV), a whole-field velocity measurement method, requires the use of fast, reliable, computer-based methods for tracking velocity vectors. The full search block matching, the most widely studied and applied technique both in area of PIV and Image Coding and Compression, is computationally costly. Many less expensive alternatives have been proposed mostly in the area of Image Coding and Compression. Among others, TSS, NTSS, HPM are introduced for the past PIV analysis, and found to be successful. But, these algorithms are based on small dynamic range, 7 pixels/frame in maximum displacement. To analyze the images with large displacement, Even and Odd field image separation and a simple version of multi-resolution hierarchical procedures are introduced in this paper. Comparison with other algorithms are summarized. A Results of application to the turbulent backward step flow shows the improvement of new algorithm.
기존의 영역기반의 영상정합이나 에피폴라 기하 혹은 고도값 제한 등을 통해 정합의 탐색영역을 줄임으로 영상정합의 효율성을 높이는 방법들은 비슷한 형태의 고층 건물이 밀집되어 있는 대규모 도심지와 같은 경우 오정합의 가능성이 크며 정합에 소요되는 시간도 여전히 오래 걸리는 단점을 갖고 있다. 이러한 단점을 보완하기 위하여 건물 인식을 통한 영상정합법에 대하여 연구를 수행하고자 한다. 본 논문에서는 새로운 영상정합기법의 기초연구로서 컬러영상으로부터 경계정보와 색상 정보를 활용하여 동일 건물 인식에 관하여 실험을 수행하였다. 경계정보와 색상정보를 활용하기 위하여 각각 보완된 Hausdorff 거리개념과 보완된 컬러 인덱싱 기법을 적용하였다. 각각의 정보를 단독으로 활용한 경우 동일건물의 인식률이 경계정보의 경우 46.5%, 색상정보의 경우 7.1%로 매우 낮았으나, 두 가지 정보를 조합하여 인식을 실시한 결과 78.5%로 인식률이 높아지는 것을 확인할 수 있었다.
본 연구에서는 기존의 연구들에서 주로 사용하여왔던 현장측량, 항공사진, 라이다 데이터 등의 취득이 원천적으로 어려운 지역에 대한 건물 영역 추출을 구현하고자 하였다. 이에 접근성에 큰 영향을 받지 않는 거의 유일한 데이터인 고해상도 위성영상을 활용한 방법론을 제시하고자 한다. 영상정합을 통해 추출되는 점군 데이터 또는 DSM(Digital Surface Models)을 활용한 건물 영역 추출은 데이터내의 높은 잡음과 다수의 빈 영역으로 인해 그 정확성에 한계를 보이고 있다. 따라서 본 연구에서는 영상 정합을 통해 얻어진 3차원 점군 데이터, 영상의 색상 및 선형 정보를 결합하여 건물 영역 추출을 수행하는 하이브리드식 접근법을 제안하였다. 일차적으로 다중영상정합으로 얻어진 3차원 점군 데이터로부터 지면점과 비지면점을 분리하고, 비지면점으로부터 초기 건물 대상지를 추출한다. 이후, 영상의 색상기반 분할을 수행하여 얻어진 결과와 초기 건물 대상지를 결합하여, 색상분할기반 건물 대상지를 추출한다. 이어서 영상의 선형 추출 및 공간 분할정보를 이용하여 최종적인 건물 영역을 선정하게 된다. 본 논문에서 제시한 건물 영역 자동 추출 방법론은 Correctness: 98.44%, Completeness: 95.05%, 위치오차: 1.05m 정도의 성능을 보임을 확인하였으며, 더불어 직각형태 이상의 복잡한 건물 영역도 잘 추출함을 확인하였다.
This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.
본 논문은 영상에서 특정 원통형 약통을 식별할 수 있는 모델 이미지 생성 방식을 제시하고 데이터 수집에 대한 기술을 연구한다. 기존 연구들은 객체 인식과 특정 객체 식별이 분리되어 있어 이미지 스티칭(image stitching) 자동화에 적용하기 어려웠으며, 좌표 기반 이미지 추출 방식이 이미지 스티칭 과정에서 객체 영역 외의 정보도 모델 이미지에 포함시키는 문제를 갖고 있었다. 이를 해결하기 위해 본 논문은 최근에 출시된 YOLOv8(You Only Look Once)의 세그멘테이션(segmentation)기법을 수직축 회전하는 약통 영상에 적용하고 특징점 매칭 알고리즘인 ORB(Oriented FAST and Rotated BRIEF)를 활용하여 모델 이미지 생성을 자동화하였다. 연구 결과, 세그멘테이션 기법을 적용할 경우 특정 약통 식별시 인식률이 향상되었으며 특징점 매칭 알고리즘으로 생성된 모델 이미지는 특정 악통을 정확하게 식별해 낼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.