• 제목/요약/키워드: area average rainfall

검색결과 283건 처리시간 0.026초

Climate Change in Corn Fields of the Coastal Region of Ecuador

  • Borja, Nicolas;Cho, Jaepil;Choi, KyungSook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.271-271
    • /
    • 2015
  • The Ecuadorian coast has two different climate regions. One is humid region where the annual rainfall is above 2000 mm and rain falls in almost all months of the year, and the other is dry region where the annual rainfall can fall below 50 mm and rainfall can be very seasonal. The agriculture is frequently limited by the seasons during the year and the availability of rainfall amounts. The corn fields in Ecuador are cultivated during the rainy season, due to this reason. The weather conditions for optimum development of corn growth require a monthly average rainfall of 120 mm to 140 mm and a temperature range of $22^{\circ}C{\sim}32^{\circ}C$ for the dry region, and a monthly average rainfall of 200 mm to 400 mm and a temperature range of $25^{\circ}C{\sim}30^{\circ}C$ for the humid area. The objective of this study is to predict how the weather conditions are going to change in corn fields of the coastal region of Ecuador in the future decades. For this purpose, this study selected six General Circulation Models (GCM) including BCC-CSM1-1, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRIC-CGC3 with different climate scenarios of the RCP 4.5, RCP 6.0, and RCP 8.5, and applied for the period from 2011 to 2100. The climate variables information was obtained from the INAMHI (National Institute of Meteorology and Hydrology) in Ecuador for the a base line period from 1986 to 2012. The results indicates that two regions would experience significant changes in rainfall and temperature compared to the historical data. In the case of temperature, an increment of $1^{\circ}C{\sim}1.2^{\circ}C$ in 2025s, $1.6^{\circ}C{\sim}2.2^{\circ}C$ in 2055s, $2.1^{\circ}C{\sim}3.5^{\circ}C$ in 2085s were obtained from the dry region while less increment were shown from the humid region with having an increment of $1^{\circ}C$ in 2025s, $1.4^{\circ}C{\sim}1.8^{\circ}C$ in 2055s, $1.9^{\circ}C{\sim}3.2^{\circ}C$ in 2085s. Significant changes in rainfall are also projected. The rainfall projections showed an increment of 8%~11% in 2025s, 21%~33% in 2055s, and 34%~70% in 2085s for the dry region, and an increment of 2%~10%, 14%~30% and 23%~57% in 2025s, 2055s and 2085s decade respectively for humid region.

  • PDF

지하수 관개지역 논에서의 배출부하 특성 (Characteristics of Pollutant Loading from Paddy Field Area with Groundwater Irrigation)

  • 윤춘경;김병희;전지홍;황하선
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.116-126
    • /
    • 2002
  • Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.

단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산 (Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve)

  • 최귀열
    • 한국농공학회지
    • /
    • 제7권1호
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

저수지의 퇴사에 관한 연구 (Study on Sedimentation in Reservoir)

  • 류희정;김치원
    • 물과 미래
    • /
    • 제9권2호
    • /
    • pp.67-75
    • /
    • 1976
  • With 9 existng reservoirs selected in the Sab-Gyo River Basin, the sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoirs capacity. The reservoirs has a total drainage area of 6,792 ha, with a total capacity of 1,204.09 ha-m, and are short of water supply due to reduction of reservoirs capacity. Annual sedimention in the reservcire is relation to the drainage area, the mean of annual rain fall, and the slop of drainage area. The results of obtained from the investigation are summarized as follow; (1) A sediment deposition rate is very high, being about $9.19{m}^3/ha$ of drainage area, and resulting in the average decrease of reservoir capacity by 19.1%. This high rate of deposition could be mainly attributed to the serve denvdation of forests due to disor derly cuttings of tree. (2) An average unit storage of 415.8mm as the time of initial construation is decreesed to 315.59mm at present, as resultting, we could'nt supply water at 566.24ha. (3) A sediment deposition rate as a relation to the capacity of unit drainage area is as follow; $Qs=1.43 (c/a)^{0.531}$ (4) A sediment deposition rate as a relation to the mean of annval rainfall is as follow; $Qs=672.61 p^{0.024}$ (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow; $Qs=267.21 S^{0.597}$

  • PDF

시간 해상도 변화에 따른 IMERG 정확도 평가 (Evaluation of the Accuracy of IMERG at Multiple Temporal Scales)

  • 김주훈;최윤석;김경탁
    • 한국지리정보학회지
    • /
    • 제20권4호
    • /
    • pp.102-114
    • /
    • 2017
  • 본 연구는 위성으로부터 유도된 강우자료 중 GPM IMERG의 정확도를 평가함으로써 미계측 혹은 비접근 지역에 대한 적용성을 판단하는 것을 목적으로 하였다. 연구대상 유역은 한반도 전역에 대하여 6개 권역으로 구분하여 분석을 수행하였다. 연구 유역에 대한 강우자료는 기상청에서 생산하고 있는 ASOS의 강우량 자료와 IMERG 위성강우자료를 이용하였다. 1시간의 시간해상도에서 평균 0.46의 상관계수를 가지며 24시간 해상도의 상관분석에서는 0.69로 높은 상관관계를 보이는 것으로 분석되었다. IMERG 강우량은 지상계측 강우량 보다 과소추정되는 것으로 분석되었으나, 시간 해상도가 낮아질수록 편이가 감소하는 것으로 분석되었다. 한편, 강우가 큰 기간의 사상 2개를 선정하여 분석한 결과 1시간 해상도의 상관계수는 0.68 및 0.69 값을 나타내었다. 또한 강우의 공간분포도 ASOS 및 IMERG 모두 유사한 분포를 보이는 것으로 분석되었다. 그러므로 IMERG 자료는 계측자료가 부족하거나 접근이 어려운 지역에서의 수문 기상 특성을 파악하는데 매우 유용할 것으로 판단된다. 향후 연구에서는 분석기간의 확장과 다양한 통계 분석 방법을 적용하여 위성강우의 정확도를 검증하는 연구를 수행할 계획이다.

부산지방 강수량의 변화시점에 관한 통계적 접근 (The Statistical Approaches on the Change Point Problem Precipitation in the Pusan Area)

  • 박종길;석경하
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 1998
  • This paper alms to estimate the change point of the precipitation in Pusan area using the several statistical approaches. The data concerning rainfall are extracted from the annual climatological report and monthly weather report issued by the Korean Meteorological Administration. The average annual precipitation at Pusan is 1471.6 mm, with a standard deviation of 406.0 mm, less than the normal(1486.0 mm). The trend of the annual precipitation is continuously decreasing after 1991 as a change point. And the statistical tests such as t-test and Wilcoxon rank sum test reveals that the average annual precipitation of after 1991 is less than that of before 1991 at 10% significance level. And the mean gnu성 precipitation In Kyongnam districts is also continuously decreasing after 1991 same as Pusan.

  • PDF

낙동강하구 을숙도 새섬매자기(Bolboschoenus planiculmis) 군락 변화 연구 (Annual Changes in the Distribution of Bolboschoenus planiculmis in the Eulsuk-Island, Nakdong River Estuary)

  • 박희순;주기재;이원호;김지윤;김구연
    • 생태와환경
    • /
    • 제56권3호
    • /
    • pp.259-267
    • /
    • 2023
  • This study analyzed the relationship between distribution of Bolboschoenus planiculmis which is main food source of swans (national monument species) with environmental factors, discharge, rainfall, and salinity in Eulsuk-do from 2020 to 2023. The distribution area of B. planiculmis in Eulsuk tidal flat was 103,672m2 in 2020, 95,240 m2 in 2021, 88,163 m2 in 2022, and 110,879 m2 in 2023, and represents a sharp decrease compared to the 400,925 m2 area recorded in 2004. From 2020 to 2023, the growth densities of B. planiculmis were 243.6±12.5 m-2, 135.45±7.38 m-2, 51.10±2.54 m-2, and 238.20±16.36 m-2, respectively, and the biomass was 199.89±28.01 gDW m-2, 18.57±5.12 gDW m-2, 6.55±1.12 gDW m-2, and 153.53±25.43 gDW m-2 in 2020, 2023, 2021, and 2022, respectively. Based on discharge during May~July, which affects plant growth, the left gate discharge of the estuary barrage from 2020 to 2023 was 62,322 m3 sec-1, 33,329 m3 sec-1, 6,810 m3 sec-1, and 93,641 m3 sec-1, respectively; rainfall was 1,136 mm, 799 mm, 297 mm, and 993 mm, respectively; and average salinity was 14.7±9.4 psu, 21.1±4.7 psu, 26.1±2.7 psu, and 14.5±11.1 psu, respectively. In 2022, cumulative rainfall (978 mm, about 70% of the 30-year average) and discharge (43,226 m3 sec-1) decreased sharply, resulting in the highest mean salinity (25.46 psu), and the distribution area, density, and biomass of the B. planiculmis decreased sharply. In 2023, there was a rise in discharge with an increase in rainfall, leading to a decrease in salinity. Consequently, this environmental change facilitated the recovery of B. planiculmis growth.

GIS를 활용한 돌발홍수 기준우량 결정 (Determining the Flash Flood Warning Trigger Rainfall using GIS)

  • 황창섭;전계원;연인성
    • 한국지리정보학회지
    • /
    • 제9권1호
    • /
    • pp.78-88
    • /
    • 2006
  • 본 연구에서는 GIS기법을 활용한 산악지역의 돌발홍수 기준우량을 산정하기위해 지형기후학적 순간단위유량도(geomorphoclimatic instantaneous unit hydrograph, GCIUH)와 연계하여 유출해석을 수행하였다. 천동계곡 유역의 평균경사, 면적, 유로특성등 지형자료 구축에 GIS기법을 적용하였으며, 특히 GCIUH의 중요 입력변수인 하천차수 결정시 GIS기법을 활용하여 차수를 선정하였다. 산악지역 유출량 산정의 적합성을 위해 천동계곡 유역($14.58km^2$)에 대한 확률강우량으로 GCIUH의 첨두유량과 기본 보고서의 확률홍수량 자료를 비교하여 적합성을 확인하였다. 적합성이 확인된 GCIUH를 이용하여 천동계곡 유역의 돌발홍수 기준우량을 산정한 결과 한계유출량이 $11.42m^3/sec$일때, 최초 20분간 기준우량이 12.57mm가 발생하면 위험한 것으로 분석되었다.

  • PDF

한국토양유실량 및 토양유실위험 지역 분석 (Analysis of Korea Soil Loss and Hazard Zone)

  • 김주훈;김경탁;이효정
    • Spatial Information Research
    • /
    • 제17권3호
    • /
    • pp.261-268
    • /
    • 2009
  • 본 연구는 전국 토양유실분포도와 토양유실위험 등급도를 작성하는 것을 목적으로 하였다. 토양유실분포도는 RUSLE를 이용하였고, 강우-유출 침식성인자(R)는 기상청의 59개 기상관측소의 1977년부터 2006년까지 (30년간)의 강우량 자료를 이용하여 산정하였다. 빈도분석은 FARD를 이용하였고, 전국 R인자를 빈도별로 산정하였다. 전국 R인자 분석에서 낙동강 유역이 가장 작은 값을 한강유역이 큰 값을 갖는 것으로 분석되었다. 토양유실량 분석결과 토지피복별로 초지, 나지 밭의 크기 순서로 토양유실이 발생하고, 전체적으로 약17.2ton/ha 정도의 토양유실이 발생하는 것으로 분석되었다. 단위면적당 평균토양유실량은 나지와 초지에서 많은 토양유실이 발생하고 있다. 5년빈도 강우특성에서 전체 토양유실량은 15,000여 톤의 토양유실이 발생하는 것으로 나타났다. 토지피복별 면적비를 고려하면 논, 산림, 밭작물 재배지역에서 많은 토양유실이 발생하는 것으로 분석되었다. 토양유실 위험 등급도 작성은 토양유실위험 등급을 5개 등급으로 구분하여 수행하였다. 분석결과 토양유실위험 2등급인 보통지역이 전체 토양유실량 위험지역의 78.2%로 가장 많은 부분을 차지하고 있으며, 심각한 토양유실 위험지역은 분석지역 전체 중에서 약 1.1%인 $1,038km^2$정도인 것으로 분석되었다. 토지피복별로 심각한 토양유실 위험지역은 나지, 초지, 밭작물 재배지역의 순으로 각각 $93.5km^2$, $168.1km^2$, $327.4km^2$ 정도가 심각한 등급의 토양유실 위험지역으로 분석되었다.

  • PDF

강우의 영향을 고려한 용담호 유입오염부하량 산정 (Estimation of Pollutant Load to Yongdam Reservoir Considering Rainfall Effect)

  • 이은형;서동일
    • 한국수자원학회논문집
    • /
    • 제36권4호
    • /
    • pp.521-531
    • /
    • 2003
  • 용담호의 주요 유입 지류를 대상으로 1998년 12월부터 1999년 10월까지 매월 1회 측정된 수질농도 자료와 1999년 6원 강우시 3차에 걸쳐 4시간 간격의 집중 수질 측정 자료를 이용하여 강우의 영향을 고려한 월별 가중 평균 농도를 산정하였다. 연중 오염물질 유입부하를 산정하기 위하여 10 mm 이상의 강우가 발생하였을 경우 유역의 표면유출 및 오염물질 농도가 심각하게 증가한다고 가정하고, 강우시 측정된 수질농도 측정치를 적용하였으며, 10 mm 이하의 강우가 발생한 경우에는 건기시에 측정된 수질 농도를 적용하였다. 산정된 월평균 수질농도는 수질모의를 위한 경계농도로 입력되어 용담호의 수질 모의를 실시하였으며 건기시 측정된 수질 농도를 수질 모의에 적용한 결과와 비교하였다. 강우의 영향을 고려할 경우 호내 평균 BOD, TN, TP 농도는 각각 70%, 5% 그리고 27% 가량 증가하는 결과를 나타냈다. 우리나라는 기후 특성상 연중 강우의 약 70% 가량이 하절기에 집중되므로 이 기간 동안에 상당량의 오염물질이 수계내로 유입되며 오염부하량 산정시 이에 대한 고려가 반드시 필요하나 일반적인 수질측정은 주로 건기시에 이루어지므로 수질 모의를 위한 입력자료로 사용될 때 정확한 모의 결과를 얻을 수 없다. 따라서 건기시와 우기시 수질 측정을 통한 실제 유입 농도의 산정은 수질모델의 적용에 있어서 신뢰도의 향상에 기여할 수 있을 것으로 판단된다.