• Title/Summary/Keyword: arcing horn

Search Result 16, Processing Time 0.024 seconds

A Development of 22.9kV Arcing Horn for Distribution Line Towers (22.9kV 배전철탑용 아킹혼 설계)

  • Oh Hun;Sohn Hong-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.70-75
    • /
    • 2006
  • Owing to the strike of lightning a breakage of insulator would happen. This breakage may give rise to many problems such as increment of reclosing failure, a drop for reliance and a hardship of maintenance and repair. To solve those problem, this study develop a protected equipment for insulator which is suitable to 22.9[kV] distribution line towers and is purposed to investigation for a Proper adaption, Protection efficiency of insulator and effect of adaption.

A Study on Multi-Phase Flashover in 765kV Transmission Line using EMTP (EMTP를 이용한 765kV 송전선로 다상 섬락에 관한 연구)

  • Ka, B.H.;Min, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1586-1588
    • /
    • 1998
  • To use the EMTP, in this paper, a arcing horn is simulated by non-linear resistor and inductor element using TACS, a tower by distributed parameter model, and lines as K. C. Lee model. Changing lightning current characteristics, lightning position, and tower footing resistor value, we analysis multi-phase flashover characteristics in 765 kV transmission line.

  • PDF

A Development of Arcing Horn for Distribution Line Towers (배전철탑용 아킹혼 개발)

  • Cho, Hyun-Seob;Ryu, In-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.172-175
    • /
    • 2006
  • Owing to the strike of lighting a breakage of insulator would happen. This breakage may give rise to many problems such as increment of reclosing failure, a drop for reliance and a hardship of maintenance and repair. To solve those problems, this study develop a protected equipment for insulator which is suitable to 22.9kV distribution line towers and is purposed to investigation for a proper adaption, protection efficiency of insulator and effect of adaption.

  • PDF

A study on the flashover characteristics of arcing horn fittings (아킹혼 금구류 섬락특성 연구)

  • Kim, Tae-Hoon;Kwak, Joo-Sik;Jung, Moon-Gyu;Jung, Jae-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.453-454
    • /
    • 2015
  • 낙뢰에 대한 전력계통의 적절한 보호를 위해서 피뢰기/아킹혼의 적절한 보호작동 설계가 필요하다. 피뢰기/아킹혼은 낙뢰에 의해 이상전압 발생시 섬락 동작을 통하여 계통을 보호하므로, 절연파괴 특성에 대한 상세한 연구가 필요하다. 본 논문에서는 피뢰기/아킹혼의 섬락동작에 직접적인 영향을 주는 절연갭의 미세조정에 따른 절연파괴 특성에 대한 연구를 실험적으로 수행하였다. 실험 결과, 갭간격이 증가할수록 절연파괴전압은 증가하고, 그 증가폭은 지수적으로 감소하는 전형적은 방전 특성을 확인하였으며, 그 상세한 변화 값을 측정하였다. 또한 표준 갭간격에서의 섬락특성과 섬락전압 분포도를 구하여 절연협조 상태를 분석하였다.

  • PDF

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

A Development of 22.9kV Arcing Horn for Distribution Line Towers (22.9kV 배전철탑용 아킹혼 개발)

  • Ju, Jin-Young;Kim, Kwang-Eui;Sohn, Hong-Kwan;Shin, Yong-Deok;So, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.473-475
    • /
    • 2003
  • Owing to the strike of lightning a breakage of insulator would happen. This breakage may give rise to many problems such as increment of reclosing failure, a drop for reliance and a hardship of maintenance and repair. To solve those problem, this study develop a protected equipment for insulator which is suitable to 22.9kV distribution line towers and is purposed to investigation for a proper adaption, protection efficiency of insulator and effect of adaption.

  • PDF