• Title/Summary/Keyword: architectural glass

Search Result 212, Processing Time 0.024 seconds

Constructing Foreign Reception Hall and Modern Royal Diplomatic Protocol in the Gyungungung Palace during 1899-1902 (근대적 궐내 외교관 의례의 성립과 1899~1902년 경운궁 휴게소의 건립)

  • Chang, PilGu
    • Journal of architectural history
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2018
  • Foreign Reception Hall in Gyeongungung Palace was constructed during 1899-1902 according to Yesigjangjeong (禮式章程), Korean Empire's modern diplomatic protocol. This bulilding is a case worthy of notice, because its construction process was written in Jubon(奏本), Korean Empire's official document. Yesigjangjeong(禮式章程) regulates the process of diplomat's audience with Emperor Gojong. The process suggested that Foreign Reception Hall was designed as the place of the end as well as the beginning for audience. According to the process, diplomat came through main gate, Daehanmun and outer gate of main hall(Junghwajeon Hall, Audience Hall), then arrived at the stair to Foreign Reception Hall. After waiting time in the hall, he was going to be granted an audience with Emperor. And he exited through Foreign Reception Hall as the reverse way. This hall was constructed as western-style. Subcontracted carpenters and wood sculptors and laborers from China represents that chinese workers were prevailed in the government construction at that time. And modern building materials, such as glass, colored brick, sanitary wares and lightings were applied, which showed the new landscape in the middle of Gyeongungung Palace. Above all, official documents related with this hall reveals Korean Empire supervised this construction for diplomatic protocol. That is the identity of western-style buildings in Gyeongungung Palace.

Theoretical Review and Experiment on Applicability of Double Skin Facade Ventilated by Fans (팬을 부착한 이중외피의 이론적 검토 및 적용성에 대한 실험 연구)

  • Lim, Ji-Hye;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.605-613
    • /
    • 2010
  • Double skin facade(DSF) ventilated by fans consists of a normal external and an internal envelope. In this glass layer, the installed fan replaces an air inlet for the control of air flow through the cavity. The purpose of this paper is to investigate physical theory and to analyze the applicability of fans installed in a DSF. The experiment was conducted in 2 rooms. One room has a DSF with installed fans and the other one has a typical window. The room ventilated through a DSF which fans are installed was always kept warmer than the other room, ventilated directly from the outdoors. The average increase of the supplied air temperature through the DSF ventilated by fans was $6.54^{\circ}C$ at 78CMH, $6.2^{\circ}C$ at 95CMH, and $3.7^{\circ}C$ at 120CMH. As a result, the DSF with installed fans was appropriate for installation in rooms. It supplies outdoor fresh air heated through a cavity and ventilates a constant air volume.

Hans Scharoun's House Design and Modern Functionalism - A House at Weissenhofsiedlung - (한스 셔로운의 주택설계에 나타난 근대 기능주의 - 바이센호프 주택을 중심으로 -)

  • Hwangbo A. B.
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.3-10
    • /
    • 2005
  • German architect Hans Scharoun (1893-1972) has long been known as an Expressionist Architect, but recent scholarships reveal that his architectural pieces represent a profound idea of modern functional building. In this context, his architectural tendency can be constructed as an advanced functionalism. In the early twentieth century Germany, many young architects were not given chances to build due to economic hardship after World War I, and they were naturally led to imagery sketch designs for future architecture. Scharoun began with utopian fantasies as one might easily notice through his watercolor paintings in the Glass Chain period, but further developed his vision into a more concrete idea on organic building which he believed to be a modem functionalism. This paper intends to exemplify Scharoun's modern functionalism through a detailed analysis of his design of Weissenhofhaus presented at Stuttgart Deutscher Werkbund Exhibition in 1927. Weissenhofhaus is often rebuked for its expressionist qualifies by famous critics such as Sigfried Giedion and Nikolaus Pevsner, but the house also suggests other possibilities within the Modern Movement in Architecture. In particular, Weissenhofhaus is chosen for its historical importance linking two world war eras in German modern architecture.

A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure (샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구)

  • Kim, Do-Hyun;Cho, Nam-wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

A Study on the Ambiguity of the Boundary in the Inside Space through the Composition of Section (단면 구성을 통한 공간 내부 경계의 모호성에 관한 연구)

  • Lim Jong-Yup;Lee Hong
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.6 s.53
    • /
    • pp.95-102
    • /
    • 2005
  • The purpose of this study was to analyze the ambiguity of the boundary through the composition of section. The building means the compose of the inside space by physical shell. Inside space that has boundary factors like floor, wall, roof and column is surrounded outside space. The factors which compose the boundary was expressed by architects as various analysis, but it has changed as changing of paradigm and information revolution. The inside space and outside space were connected through the system arrangement, so various space could construct by an aspect of relation. The history of architecture was written as the establishment of in-out space by architectural boundary factors, but the space could not divide definitely, composed complex structure, could experience various recognition. The existing study which is focused on Ambiguity of the Boundary is just focused on contemporary architecture. Ambiguity of the Boundary is developed by using glass. The transparency of glass removed the boundary of space, so it can be created free wall, continuity of view. It was Influenced the boundary of the sight and changed the expression of boundary between the space. This study is to analyze the change of boundary awareness and find the ambiguity of boundary in the section.

A Study on the Design and Power Performance of a Variable Photovoltaic Lightshelf Mounted on the Windows (창호거치 태양광발전 가변형광선반 설계 및 기초적 발전성능에 관한 연구)

  • Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.105-111
    • /
    • 2013
  • This study aims to suggest the PV lightshelf and to evaluate the power performance of the photovoltaic systems easily mounted on the windows. For the study, the suggested systems consist of two parts as fixed and movable PV modules. Also, tempered glass and polycarbonate are used on the surface protection materials for solar cells of PV lightshelf. By using polycarbonate, the weight of PV lightshelf is lighter about 20%. The field tests are performed for five days by using real size models. The voltage, current and electric powers are measured as basic performances of PV lightshelf. Also, the irradiation, brightness and module surface temperature are measured as outside conditions. As results, the power performance of tempered glass PV lightshelf shows about 11(%) higher thant that of polycarbonate PV lightshelf. And the power performance shows about 5(%) higher in a horizontal system. This results could be used to develop the effective PV lightshelf in next study.

Performance Analysis of a BIPV Module Based on Round Robin Test of IEA PVPS Task 15 (국제에너지기구 태양광발전 협력사업의 공동실험 방법에 의한 건물일체형 태양광발전(BIPV) 모듈의 성능 평가 분석)

  • Kim, Jin Hee;Ahn, Jong Gwon;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.54-59
    • /
    • 2020
  • Within the IEA (International Energy Agency) PVPS (Photovoltaic Power System) Programme Task 15, 'Enabling Framework for the Acceleration of BIPV,' a round-robin action focusing on the performance of vertical BIPV elements as a facade in different climatic environments was performed. The performance of identical (both, in construction and bill of materials (BOM)) glass-to-glass c-Si BIPV elements was monitored at seven outdoor test sites in 6 different countries in Europe and Asia. In this work, the comprehensive results of the electrical and corresponding meteorological data will be presented and discussed. The monitored data were merged, processed, and filtered for further analysis. The analysis includes the chracteristics of the module temperatures and the in-plane irradiation at the outdoor test locations, mean daily PR per test module, time series of mean daily performance ratio coefficients, and monthly yield.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms

  • Zhu, Yirong;Huang, Lihua;Zhang, Zhijun;Bayrami, Behzad
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.389-406
    • /
    • 2022
  • Recycling concrete construction waste is an encouraging step toward green and sustainable building. A lot of research has been done on recycled aggregate concretes (RACs), but not nearly as much has been done on concrete made with recycled aggregate. Recycled aggregate concrete, on the other hand, has been found to have a lower mechanical productivity compared to conventional one. Accurately estimating the mechanical behavior of the concrete samples is a most important scientific topic in civil, structural, and construction engineering. This may prevent the need for excess time and effort and lead to economic considerations because experimental studies are often time-consuming, costly, and troublous. This study presents a comprehensive data-mining-based model for predicting the splitting tensile strength of recycled aggregate concrete modified with glass fiber and silica fume. For this purpose, first, 168 splitting tensile strength tests under different conditions have been performed in the laboratory, then based on the different conditions of each experiment, some variables are considered as input parameters to predict the splitting tensile strength. Then, three hybrid models as GWO-RF, GWO-MLP, and GWO-SVR, were utilized for this purpose. The results showed that all developed GWO-based hybrid predicting models have good agreement with measured experimental results. Significantly, the GWO-RF model has the best accuracy based on the model performance assessment criteria for training and testing data.