• Title/Summary/Keyword: arching effect

Search Result 140, Processing Time 0.031 seconds

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.

The Effect of Cut-slope on Structural Behavior of Cut-and-Cover Tunnel (굴착경사가 개착식터널의 구조적거동에 미치는 영향에 관한 연구)

  • 유건선
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2001
  • Existing cut-and-cover tunnels are designed regardless of cut-slope under the assumption that the overburden weight of backfill soil acts on tunnel arch and the earth pressure at rest acts on tunnel walls. However, actual earth pressures acting on the tunnel lining depend on open-cut size composed of cut-slope and cut-width, and thus the tunnel lining shows a different structural behavior. This study investigated the effect of cut-slope on structural behavior of the cut-and-cover tunnel lining as follows; Firstly, a comprehensive numerical analysis method using FLAC2D code was used and verified by field measurements of tunnel profile. Secondly, based on the verified numerical analysis technique, earth pressure acting on the lining, and displacement and sectional force developed on the lining were estimated with various shapes of cut-slopes$30^{\circ}\;, 456{\circ},\; 60^{\circ},\; and\;75^{\circ}%). Numerical analysis results indicate that the steeper cut-slope shows the more displacement and moment of the tunnel lining.

  • PDF

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

Research on the Load Reduction Effect Using EPS (EPS의 압축성을 이용한 토압저감효과에 관한 연구)

  • 김진만;조삼덕;최봉혁;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • For the last 30 years, the use of EPS as a lightweight filling material has grown significantly throughout the world. The fields of applying EPS block have also increased. The most representative example in geotechnical applications is using EPS block as a compressible inclusion that causes the reduction of static earth pressure on earth-retaining wall, bridge abutment and pipes. EPS blocks have a good workability by its lightweight characteristic and a uniform engineering property with the change of its density. Also EPS blocks have best material property as a compressible inclusion. This paper analyzes that the compressible inclusion function of EPS causes the reduction of static earth pressure on retaining wall and concrete box culvert. A series of in-situ tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on in-situ test, it is found that the magnitude of static earth pressure was reduced to about 20% for the retaining wall and about 45∼53% for the box culvert compared with theoretical active earth pressure.

Lateral Earth Pressure with The Shape of Narrow Space with Backfill (좁은 공간의 형상에 따른 되메움 토압에 관한 연구)

  • Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.89-96
    • /
    • 2008
  • The study, with regard to unsymmetrically inclined backfilled wall, was intended to estimate the lateral earth pressure, develop the equation for lateral earth pressure and eventually identify the mutual behavior, based on the modified Kellogg theory, while changing the width between the walls, wall angle, relative density and wall friction angle. To verify the geostatic pressure obtained from the study, the results in the wake of 62 kinds of model tests performed were compared and evaluated with the behaviors based on theoretical equations. As a result, the wall inclination angle was found to be the factors affecting the earth pressure the most, when both walls were inclined unsymmetrically. And the narrower the backfill space and the larger the wall inclination angle to the horizontal level, the greater the effect of the wall friction. The equation considering the wall friction reaction indicated the value, which was closer to the actually-measured earth pressure, and when the width between the warts was narrow, the arching effect appeared to be great, thereby indicating the difference between the measured earth pressure, theoretically calculated earth pressure and the geostatic pressure proved to be insignificant.

A field investigation on an expansive soil slope supported by a sheet-pile retaining structure

  • Zhen Zhang;Yu-Liang Lin;Hong-Ri Zhang;Bin He;Guo-Lin Yang;Yong-Fu Xu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.315-324
    • /
    • 2024
  • An expansive soil in 4970 special railway line in Dangyang City, China, has encountered a series of landslides due to the expansion characteristics of expansive soil over the past 50 years. Thereafter, a sheet-pile retaining structure was adopted to fortify the expansive soil slope after a comprehensive discussion. In order to evaluate the efficacy of engineering measure of sheet-pile retaining structure, the field test was carried out to investigate the lateral pressure and pile bending moment subjected to construction and service conditions, and the local daily rainfall was also recorded. It took more than 500 days to carry out the field investigation, and the general change laws of lateral pressure and pile bending moment versus local daily rainfall were obtained. The results show that the effect of rainfall on the moisture content of backfill behind the wall decreases with depth. The performance of sheet-pile retaining structure is sensitive to the intensity of rainfall. The arching effect is reduced significantly by employing a series of sheet behind piles. The lateral pressure behind the sheet exhibits a single-peak distribution. The turning point of the horizontal swelling pressure distribution is correlated with the self-weight pressure distribution of soil and the variation of soil moisture content. The measured pile bending moment is approximately 44% of the ultimate pile capacity, which indicates that the sheet-pile retaining structure is in a stable service condition with enough safety reserve.

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

Analytical study of circle tunnel Load considering Dilatancy Effect (Dilatancy 효과를 고려한 원형 터널 이완하중에 대한 해석적 연구)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.626-633
    • /
    • 2020
  • This study examined the behavior of the ground by comparing the methods using the results of the Terzaghi formula and the ground investigation data and method considering the dilatancy effect for a circular tunnel using the finite element method. In the case of the Terzaghi formula, the tunnel load can be overestimated and cause overdesign. The method using the results of the ground investigation data cannot be applied when a reasonable coefficient of earth pressure is not determined. This is because it behaves completely differently from the actual behavior, and unexpected problems can occur. In the case of the method considering the dilatancy effect, however, both the strength enhancement effect can be considered through the dilatancy angle and relative density. Therefore, the tunnel load was calculated most reasonably using the method considering dilatancy. Finite element analysis using the geotechnical survey results showed that the tensile stress acts at the top of the tunnel when the upper soil of the tunnel is shallow. On the other hand, additional verification is necessary, such as a comparison with the field measurement results. Through additional research, if normalized, the tunnel load can be calculated reasonably at the time of tunnel design, and safe and economical design is possible.