• Title/Summary/Keyword: archeological geophysics

Search Result 4, Processing Time 0.02 seconds

NearSurface geophysical applications in Greece focused in archaeological prospection

  • Tsourlos, Panagiotis
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.24-41
    • /
    • 2007
  • In this paper several recent case studies of near surface geophysical applications in Greece are presented. The case studies are focused mostly in archeological site investigation, a field which is of high interest in Greece due to its reach historical heritage. The growing construction works in several parts of Greece as well as the increasing public interest in exploring and preserving cultural heritage lead to an increase of the application of nearsurface geophysics techniques as a preliminary investigation tool prior to engineering and archeological excavation works. Research efforts, presented in this work, are focused to extending and adapting standard nearsurface techniques in order to be made more effective for archaeological site investigation. The presented case studies involve not only standard field investigation procedures but also novel approaches such as the use of non-spike electrodes, efficient measuring and instrumentation strategies, unusual configurations and measurement environments. Overall it shown that efficient and state-of-art nearsurface geophysical techniques used for archaeological prospection purposes provide significant archaeological and structural information valuable for archeologists, engineers and conservation scientists.

  • PDF

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Effective 3-D GPR Survey for the Exploration of Old Remains (유적지 발굴을 위한 효율적 3차원 GPR 탐사)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Son, Jeong-Sul;Cho, Seong-Jun;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Since the buried cultural relics are three-dimensional (3-D) objects in nature, 3-D survey is more preferable in archeological exploration. 3-D Ground Penetrating Radar (GPR) survey based on very dense data in principle, however, might need much higher cost and longer time of exploration than other geophysical methods commonly used for the archeological exploration, such as magnetic and electromagnetic methods. We developed a small-scale continuous data acquisition system which consists of two sets of GPR antennas and the precise positioning device tracking the moving-path of GPR antenna automatically and continuously. Since the high cost of field work may be partly attributed to establishing many profile lines, we adopted a concept of data acquisition at arbitrary locations not along the pre-established profile lines. Besides this hardware system, we also developed several software packages in order to effectively process and visualize the 3-D data obtained by the developed system and the data acquisition concept. Using the developed system, we performed 3-D GPR survey to investigate the possible historical remains of Baekje Kingdom at Buyeo city, South Korea, prior to the excavation. Owing to the newly devised system, we could obtain 3-D GPR data of this survey area having areal extent over about $17,000m^2$ within only six-hours field work. Although the GPR data were obtained at random locations not along the pre-established profile lines, we could obtain high-resolution 3-D images showing many distinctive anomalies, which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This cast: history led us to the conclusion that 3-D GPR method is very useful not only to examine a small anomalous area but also to investigate the wider region of the archeological interests.

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries (기원후 600년간 한반도 지구 자기장 고영년변화)

  • Park, Jong kyu;Park, Yong-Hee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.611-625
    • /
    • 2022
  • One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.