• Title/Summary/Keyword: arch system

Search Result 332, Processing Time 0.028 seconds

Parameter Estimation of Shallow Arch Using Quantum-Inspired Evolution Algorithm (양자진화 알고리즘을 이용한 얕은 아치의 파라미터 추정)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2020
  • The structural design of arch roofs or bridges requires the analysis of their unstable behaviors depending on certain parameters defined in the arch shape. Their maintenance should estimate the parameters from observed data. However, since the critical parameters exist in the equilibrium paths of the arch, and a small change in such the parameters causes a significant change in their behaviors. Thus, estimation to find the critical ones should be carried out using a global search algorithm. In this paper we study the parameter estimation for a shallow arch by a quantum-inspired evolution algorithm. A cost functional to estimate the system parameters included in the arch consists of the difference between the observed signal and the estimated signal of the arch system. The design variables are shape, external load and damping constant in the arch system. We provide theoretical and numerical examples for estimation of the parameters from both contaminated data and pure data.

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon;Jin-Hee Ahn;Hong-duk Moon;Kwang-Il Cho;Jungwon Huh
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.377-389
    • /
    • 2023
  • In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

The Performance Evaluation Analysis of PV System for Arch and Flat-Plate Type (평판형 및 아치형 태양광발전 시스템의 성능평가 분석)

  • Piao, Zheng-Guo;Choi, Youn-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1012-1018
    • /
    • 2015
  • The studies on the operating performance analysis or design about the fixed tilt angle flat-plate photovoltaic (PV) system are still lively going off. However the operating property analysis about the arch type PV system which means PV array were designed as round type is dissatisfied. In this paper, we theoretically established the factors which are cause of the deterioration in performance of arch type PV system. In addition, we use the Solar Pro simulation tools to design both flat-plate type and arch type 30kW PV systems. The simulations about arch type PV system applied two ways such as central inverter and string inverter were conducted. The performance ratio (PR) of the PV system with flat-plate type shows the highest value 74[%] when the tilt angle is 30°. In case of arch type, when applying central inverter method, PR value shows approximately 73[%] and no more difference with arch type of the PV array. This value shows 1[%] decrease compare with the flat-plate type. However when applying string inverter methods, the average PR value shows 80 % and 6% improved than the central inverter method.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.

Wind-induced vibration of a cantilever arch rib supported by a flexible cable system

  • Hang Zhang;Zilong Gao;Haojun, Tang;Yongle Li
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • The wind-resistant performance of bridges is generally evaluated based on the strip assumption. For the arch rib of arch bridges, the situation is different due to the curve axis and the variable cross-sectional size. In the construction stage, the arch rib supported by a cable system exhibits flexible dynamic characteristics, and the wind-resistant performance attracts specially attention. To evaluate the wind-induced vibration of an arch rib with the maximum cantilever state, the finite element model was established to compute the structural dynamic characteristics. Then, a three-dimensional (3D) fluid-solid coupling analysis method was realized. After verifying the reliability of the method based on a square column, the wind-induced vibration of the arch rib was computed. The vortex-induced vibration (VIV) performance of the arch rib was focused and the flow field characteristics were discussed to explain the VIV phenomenon. The results show that the arch rib with the maximum cantilever state had the possibility of VIV at high wind speeds but the galloping was not observed. The lock-in wind speeds were larger than the results based on the strip assumption. Due to the vibration of arch rib, the frequency of shedding vortices along the arch axis trended to be uniform.

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF

The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation (라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석)

  • Kim, Su-Geun;Kim, Yu-Seong;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.

Practical 2-Arch Road Tunnel Design in Mountainous area (산악지형에서 효율적인 2-Arch 터널의 설계사례)

  • Jeong, Kyeong-Han;Lee, Joo-Gong;Han, Sung-Su;Hwang, Yong-Sub;Kim, Ji-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

A Study on Behavior of 2-Arch Tunnel by Numerical Approach (수치해석적 접근을 통한 2Arch 터널의 거동양상 고찰)

  • 김상균;박동욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.225-232
    • /
    • 2003
  • The behaviour of ground induced by tunneling of 2arch tunnels may differ from the one caused by usual type tunnels. This paper describe the behaviour created by the size of pilot tunnel and the condition on the construction method of center piller Also, loads acting on the supports of the first tunnel and the center pillar during the excavation of second tunnel is investigated by numerical analyses. The results of numerical analyses are compared to the data records of measurement results, i.e. force on the support system and ground displacement.

  • PDF

Effect of the Arch Support on the Strength of the Abductor Hallucis During the Toe Spread Out Exercise in Standing Position in Individuals With Pes Planus

  • Jeon, In-cheol;Kim, Ki-song
    • Physical Therapy Korea
    • /
    • v.27 no.3
    • /
    • pp.206-211
    • /
    • 2020
  • Background: The longitudinal arch is important for individuals with pes planus. The toe spread out exercise (TSO) has been widely used to continuously support the longitudinal arch by increasing the abductor hallucis (AbdH) muscle activation. However, the AbdH muscle is commonly lack of the sufficient activation during the TSO especially in individuals with pes planus. Objects: This study was performed to investigate the effect of arch support on the muscle activity and strength of the AbdH during TSO in standing position in individuals with pes planus. Methods: Twenty subjects with pes planus between 20 and 30 years of age participated in this study. The muscle activity and strength of the AbdH were measured using surface EMG system and the Smart KEMA tensiometer system. The AbdH muscle was evaluated during TSO between individuals with and without longitudinal arch support in standing position. The longitudinal arch was supported by using the insole. The paired t-test was used. The level of statistical significance was set at α = 0.05. Results: The muscle activity and strength of the AbdH during TSO with arch support in standing position was significantly greater than that without arch support. Conclusion: The muscle activity and strength of the AbdH during TSO in standing position can be influenced by the longitudinal arch support in individuals with pes planus. The AbdH strengthening during TSO in standing with arch support can be recommended especially in individuals with pes planus in the clinical settings.