• Title/Summary/Keyword: arch bridge, dynamic analysis, natural frequency, stone structures

Search Result 2, Processing Time 0.019 seconds

Dynamic Characteristics and Compressive Stress of Multi-Layered Stone Masonry Model (석벽돌 적층모형의 압축응력과 동적특성)

  • Lee, SungMin;Shon, HoWoong;Lee, SooGon
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2004
  • When surveying the cultural heritages especially in the case of stone structures, preserving their original state is of primary importance. For the effective assessment of survey results of stone structure, the dynamic characteristics of that system should be considered. Dynamic characteristics of stone masonry structures depend on several factors such as coefficients of friction, contact conditions, and number of layers of bonding stones. These factors can be estimated by using the dynamic analysis results. This paper describes a method for natural frequency determination of traditional stone arch bridge subjected to compressive force. For this purpose, multi-layered granite brick models of for arch bridge were made and fundamental frequencies corresponding increasing axial forces were measured.

  • PDF

Dynamic Characteristics and Compressive Stress of Multi-Layered Structure (적층 구조물의 압축응력과 동적특성)

  • Shon, Ho-Woong;Lee, Sung-Min
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.63-71
    • /
    • 2006
  • When surveying the cultural heritages especially in the case of stone structures, preserving their originalstate is of primary importance. For the effective assessment of survey results of stone structure, thedynamic characteristics of that system should be considered. Dynamic characteristics of stone masonry structures depend on several factors such as coefficients of friction, contact conditions, and number of layers of bonding stones. These factors can be estimated by using the dynamic analysis results. This paper describes a method for natural frequency determination of traditional stone arch bridge subjected to compressive force. For this purpose, multi-layered granite brick models of for arch bridge were made and fundamental frequencies corresponding increasing axial forces were measured.

  • PDF