• Title/Summary/Keyword: aramid

Search Result 260, Processing Time 0.026 seconds

Charge Formation in PCB Insulations (PCB 절연체에서 전하 형성)

  • Lee, Joo-Hong;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.264-265
    • /
    • 2008
  • While the reliability of bulk insulation has become important particularly in multilayer boards and embedded boards, electronics are to be used under various environments such as at high temperature and in high humidity. We observed internal space charge behavior for two types of epoxy composites under dc electric fields to investigate the influence of water at high temperature. In the case of glass/epoxy specimen, homocharge is observed at water-treated specimen, and spatial oscillations become clearer in the water-treated specimens. Electric field in the vicinity of the electrodes shows the injection of homocharge. In aramid/epoxy specimens, heterocharge is observed at water-treated specimens, i.e. negative charge accumulates near the anode, while positive charge accumulates near the cathode. Electric field is enhanced just before each electrode. In order to further examine the mechanism of space charge formation, we have developed a new system that allows in situ space charge observation during ion migration tests at high temperature and high humidity. Using this in situ system.

  • PDF

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite (AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구)

  • 유재환
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

A Study on PET Adsorption Property of NIR Dye Using Swelling Agents (Swelling agent를 이용한 근적외선 흡수 유기색소의 polyester 흡착)

  • Kwon, Su Hyeon;Choi, Jae Hong
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • The near infrared ray camouflage fabric has a near infrared ray reluctance similar to the surrounding environment and has a camouflage effect on the surrounding environment. Synthetic fibers used in military uniforms are difficult to have gastrointestinal function as general commercial dyes, unlike cellulose fibers, which use some commercial vat dyes to impart infrared gastrointestinal function. In this study, we optimized the adsorption pH, temperature and time for NIR dye application for polyester fabrics, and established the optimum concentration for the evaluation of adsorption build-up characteristics. In addition, it is difficult to adsorb it since the polyester material has a dense crystal structure and the NIR dye is bulky. Therefore, a swelling agent used for dyeing meta-aramid fibers with high Tg and high crystallinity was introduced as a separate preparation to increase the affinity to polyester, which is a hydrophobic fiber, to thereby obtain an excellent adsorption rate. As a result of comparing before and after using swelling agent, the adsorption rate difference was 10 times or more when compared with before.

A Basic Research for Ductile Hybrid Fiber Composite Panels of Materials (유사연성 하이브리드 섬유를 이용한 복합패널의 구성 재료 기초 연구)

  • Kim, Woonhak;Kang, Seokwon;Hwang, Seongwoon
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.388-395
    • /
    • 2014
  • In this paper, usability and use force on the structure and does not have a big impact on the development of existing materials developed using materials to their full impact/blast resistant Complex configuration on the panel that can be implemented. Each material of the characteristics so that they can exert in layers of layer formed panels in layers. Structure of the general structure is to keep strength and endurance, maintenance and minimize the damage can be utilized for knee brace to do basic research, for creating the panel.

Study on the Effect of Resin Mixture Ratios on the Fatigue Crack Propagation Behavior and Mechanical Property in a FRMLs (수지 혼합비가 FRMLs의 피로균열전파거동과 기계적 성질에 미치는 영향에 관한 연구)

  • Kim, Cheol-Woong;Sohn, Se-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.149-154
    • /
    • 1999
  • FRMLs(Fiber Reinforced Metal Laminates) is a new type of hybrid materials. FRMLs consists of high strength metal and fiber which are laminated using a structural adhesive bond(epoxy resin). The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical property of Aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA) was cured with methylene dianiline(MDA) with or without accelerator(K-54). Eight kinds of resin mixture ratio were tested for the experiment ; five kinds of FRMLs(1))epoxy & curing agent) and three kinds of FRMLs(2)(epoxy & curing agent & accelerator). FRMLs(2) have a more effective characteristics on the fatigue crack propagation behavior and mechanical property than FRMLs(1)

  • PDF

Preparation and Characterization of Shock Energy Absorber Lanyard used Super Fibers (슈퍼 섬유를 이용한 Shock Energy Absorber Lanyard의 제조 및 특성분석)

  • Cho, Jin Won;Kwon, Sang Jun;Choe, Jong Deok;Kim, Sang Tae;Ji, Byung Chul;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.173-180
    • /
    • 2014
  • Fall-arrest system have been widely applied to provide a safe stop during fall incidents for occupational activities. This research object to evaluate the energy capacity of fall arrest shock energy absorber lanyard in relation to the used super fiber. In this work, shock energy absorber lanyard was prepared using high tenacity PET, high tenacity PET/P-aramid and high tenacity PET/UHMWPE, respectively. Dynamic load and static load tests based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) were conducted. Maximum arrest force by dynamic load test of shock energy absorber showed below 6,000N. Also, static strength by static load test of lanyard and rope remains 15,000N and 22,000N for 1 min.

Characteristic and Development of All-in-one Shock Energy Absorber Lanyard Protection Tube used Super Fibers (슈퍼 섬유를 활용한 일체형 Shock Energy Absorber Lanyard Protection Tube 제조 및 특성분석)

  • Cho, Jin Won;Kwon, Sang Jun;Kim, Sang Tae;Yeum, Jeong Hyun;Kang, Ji Man;Ji, Byung Chul
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.106-113
    • /
    • 2014
  • Work-related falls are a major problem in the construction and roofing industries. To avoid serious injury to the worker caused by high decelerations or forces, different systems to absorb the energy of a fall are implemented in personal protective equipment. In this study, shock energy absorber lanyard protection tube was prepared using high tenacity PET fiber, P-aramid fiber, and UHMWPE fiber, respectively. Dynamic load test and static load test, bursting strength test based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) or conformity European safety test(CE : EN355) were conducted. Especially maximum arrest force by dynamic load test of energy absorber showed below 6,000N.