• Title/Summary/Keyword: aragonite

Search Result 93, Processing Time 0.025 seconds

Mineralogical Properties and Heavy Metal Removal Efficiency of Shells (패각의 광물학적 특성 및 중금속 제거 효율 평가)

  • Song, Hye Won;Kim, Jae Min;Kim, Young Hun;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • In this study, the removal efficiencies of heavy metals were evaluated using cockle, abalone, and scallop shells. Cockle, abalone, and scallop are composed mainly of aragonite, aragonite, and calcite, and calcite, respectively. The specific surface area of each shell varies from 2.7241 m2/g to 4.5481 m2/g and the order of that is scallop > abalone > cockle. All shells of cockle, abalone, and scallop had no As removal effect by adsorption and precipitation as pH increased. Pb was removed by all shell samples at initial reaction. Although the removal efficiency of Cd and Zn were depending on the reaction medium, that was increased in order of scallop > abalone > cockle. Heavy metal removal efficiency tends to be slightly higher for heated samples than with the raw materials, and higher as the specific surface area is larger.

Review of Water-Based Synthetic Methods of Calcium Carbonate Polymorphs and Their Morphological Features (탄산칼슘 동질이상체의 수용액 기반 합성법 및 형태학적 특성 리뷰)

  • YoungJae Kim;Seon Yong Lee;Young Jae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.217-227
    • /
    • 2023
  • Crystalline calcium carbonate (CaCO3) occurs in various geological and aqueous environments as calcite, aragonite, and vaterite. These minerals also have practical applications in engineered settings. Synthetic methods of calcium carbonate have been developed for scientific research and technical applications. For example, these methods have become widely adopted for studying the formation of CaCO3 minerals and (geo-)chemical processes involving these minerals in natural and engineered systems. Furthermore, these methods have the potential to be applied in various technical and biomedical fields. Water-based synthesis is particularly important for simulating the formation of calcium carbonate minerals in natural aqueous environments. This review paper describes the procedures and experimental conditions for water-based synthetic methods of each calcium carbonate polymorph, compares the morphological and structural features of the resulting crystals, and analyzes the crystallization mechanisms.

Analysis of CaCO3 structure of marine bivalves using X-ray diffraction (해산 이매패류 패각의 CaCO3 결정 구조에 대한 X-ray 회절 분석)

  • Nam, Ki-Woong;Lee, Seng-Woo;Song, Jae-Hee;Jeung, Hee-Do;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • This study investigated spectroscopic characteristics of shell crystals of eight marine bivalve species using X-ray diffraction (XRD) analysis; moreover, the Family level relatedness of shellfish was investigated. In XRD analysis, the shells of Ruditapes philippinarum, Meretrix lusoria, Anadara granosa, and Fulvia mutica were found to have orthorhombic aragonite $CaCO_3$ crystals, while shells of Patinopecten yessoensis and Crassostrea gigas had trigonal-rhombohedral calcite crystals. The shells of Mytilus coruscus and Atrina pectinata were determined to have a mixture of aragonite and calcite crystals. XRD information revealed the Family level-specific characteristics of shellfish; the results agreed with the current taxonomic system. In conclusion, spectroscopic characteristics of shell crystals indicated Family-level characteristics of shellfish and suggested a more intense species-level investigation; this technology may be useful in identifying shellfish species using small quantities of shells.

A Study on the Synthesis of Calcium Lactate Using Precipitated Calcium Carbonate (침강성 탄산칼슘을 이용한 젖산칼슘 합성에 관한 연구)

  • Park, Joo-Won;Cho, Kye-Hong;Park, Jin-Koo;Ahn, Ji-Whan;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.173-178
    • /
    • 2008
  • Calcium lactate was prepared by reacting lactic acid with precipitated calcium carbonate (PCC) which was prepared by carbonation process (calcite) and solution process (aragonite). Effects of PCC morphology (calcite and aragonite) on calcium lactate by the solution process were investigated experimentally. Despite the slow forming rate at the initial stage, the final yield of calcium lactate appeared higher when calcite was used. Therefore, the maximum yield of calcium lactate using aragonite was 85.0% and that using calcite was 88.7%, respectively. For both cases, the optimum temperature for the preparation appeared at around $60^{\circ}C$. Furthermore, the increase in lactic acid concentration over 2.0 mol% increased slurry viscosity and deteriorated mass transfer, which resulted in low yield of calcium lactate for both cases. SEM analyses showed that the prepared calcium lactate appeared as plate-like crystal form, irrespective of PCC morphologies, reaction temperatures, and concentrations of lactic acid.

Formation Behavior of Precipitated Calcium Carbonate Polymorphs by Supersaturation (과포화도에 의한 침강성 탄산칼슘 다형체의 생성거동)

  • Ahn, Young jun;Jeon, ong Hyuk;Lee, Shin Haeng;Yu, Young Hwan;Jeon, Hong Myeong;Ahn, Ji Whan;Han, Choon
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.22-31
    • /
    • 2015
  • From results obtained by adjusting experimental variables based on the kinetic, the nucleation rate for formation of precipitated calcium carbonate (PCC) was investigated. Formation behavior of PCC was investigated for various concentrations of NaOH solution and $Na_2CO_3$ addition methods in the $Ca(OH)_2$ slurry. The range of nucleation rate was investigated for dissolution rates of major ion concentrations, $Ca^{2+}$ and $CO{_3}^{2-}$. In case of high concentration of major ions, vaterite and calcite were synthesized. The high nucleation rate was achieved for lower either $Ca^{2+}$ or $CO{_3}^{2-}$ ion concentration, calcite was mainly synthesized and when concentration of major ions was low, aragonite was synthesized. Furthermore, the formation of calcite was decreased with increasing concentration of NaOH. homogeneous aragonite could be obtained by addition 5 M NaOH. Therefore, in this study, specific shape of polymorphs could be prepared through controlling supersaturation.

Three-Dimensional Free Vibration Analysis of Orthotropic Plates (직교이방성판의 3차원 자유진동 해석에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • This paper presents the three-dimensional stress analysis of orthotropic thick plates using the three-dimensional spline strip method based on the theory of elasticity. The orthotropic plates are made of Aragonite crystal and sitka spruce. To demonstrate the convergence and accuracy of the present method, several examples are solved, and results are compared with those obtained by other exact and numerical methods based on the theory of elasticity. Good convergence and accuracy are obtained. The effects of thickness/width ratio, aspect ratio and boundary conditions on normal stress distributions of Aragonite crystal plates and sitka spruce plates are investigated. Moreover, the difference of weak orthotropic and strong orthotropic properties given to the characteristics of stress distributions are also shown.

A study on the powder synthesis of the amorphous calcium carbonate precursor for phosphors by wet chemical method (습식법에 의한 형광체 제조용 비정질 탄산칼슘 전구체 분말의 합성에 관한 연구)

  • 최종건;김판채;이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.302-308
    • /
    • 2000
  • Stable amorphous calcium carbonate were synthesized from the serial work for the synthetic conditions such as concentration of solution, reaction temperature, aging time and pH of mother liquor. By using this as a precusor, calcite, aragonite and vaterite crystal particles were obtained in the water from adequate crystallization conditions. Furthermore, characterization for flourescence were performed by using crystals which were crystallized from the Sn dopped amorphous calcium carbonate. Calcite showed the most intensive emission and the center of emission wavelength was 464 nm with pure blue color. Calcite is expected to be used as phosphor for flourescent lamp because the maximum emission intensity was obtained from the excitation with 255 nm wavelength.

  • PDF

Influence of Dissolved Gases on Crystal Structure of Electrodeposition Films Containing Calcium and Magnesium in Seawater (해수 중 칼슘 및 마그네슘을 포함한 전착 코팅막의 결정구조에 미치는 용해 기체의 영향)

  • Park, Jun-Mu;Seo, Beom-Deok;Lee, Seul-Gi;Kim, Gyeong-Pil;Gang, Jun;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.116-116
    • /
    • 2018
  • 부식은 재료와 사용 환경과의 상호작용에 의한 결과로서 일반적으로 두께의 감소와 균열의 발생 및 파손 등의 문제로 나타난다. 특히 사용환경 중에서 해수 분위기는 금속의 부식에 가장 유리한 조건이다. 따라서 해양환경 중 항만이나 조선 및 해양 산업 등에 많이 이용되는 강 구조물은 이에 대응하기 위하여 도장방식이나 음극방식을 사용하고 있다. 여기서 음극방식은 피방식체를 일정전위로 음극 분극하는 원리로써 외부전원을 인가하거나 비전위의 금속을 전기적으로 연결하여 방식하는 방법이다[1]. 한편, 해수 중에서 이와 같은 원리로 음극방식 할 경우에는 피방식체인 강재표면에 부분적으로 칼슘 또는 마그네슘 화합물 등의 생성물이 부착하는 현상을 볼 수 있게 된다. 이와 같이 수산화마그네슘($Mg(OH)_2$)및 탄산칼슘($CaCO_3$)을 주성분으로 하여 석출되는 석회질 피막(calcareous deposits)은 피방식체에 유입되는 음극방식 전류밀도를 감소시켜 주거나 물리적 장벽의 역할을 함으로써 외부의 산소와 물 등 부식환경으로부터 소지금속을 보호한다[2]. 그러나 석회질 피막은 소지금속과의 결합력, 막의 균일한 분포, 내식성 및 제작시간의 단축 등 해결해야 할 과제가 있다. 또한 여러 가지 환경 조건 등의 영향을 받아 그 피막의 형성 정도도 가늠하기 어렵기 때문에 음극방식 설계 시 그 정도에 따른 영향을 고려-반영하기가 곤란하다. 따라서 본 연구에서는 석출속도, 밀착성 및 내식특성을 향상시키기 위해 전착프로세스를 통해 해수 중 기체를 용해시켜 석회질 피막을 제작하고 막의 결정구조 제어 및 특성을 분석-평가하였다. 본 연구에 사용된 강 기판(Steel Substrate)은 일반구조용강(KS D 3503, SS400)을 사용하였으며, 외부전원은 정류기(Rectifier, xantrex, XDL 35-5T)를 사용하여 3 및 $5A/m^2$의 조건으로 인가하였다. 양극의 경우에는 해수에 녹아있는 이온 이외에 다른 성분들이 환원되는 것을 방지하기 위해 불용성 양극인 탄소봉(Carbon Rod)을 사용하였다. 이때 석출속도, 밀착성 및 내식특성 향상을 위해 해수에 주입한 기체의 양은 0.5 NL/min였으며, 기판 근처에 고정하여 음극 부근에서의 반응을 유도하였다. 각 조건별로 제작된 막의 표면 모폴로지, 조성원소 및 결정구조 분석을 실시하였으며, 석회질 피막의 밀착성과 내식특성을 평가하기 위해 규격에 따른 테이핑 테스트(Taping Test, ISO 2409)와 3 % NaCl 용액에서 전기화학적 양극 분극 시험을 진행하여 제작된 막의 내구성과 내식성을 분석-평가하였다. 시간에 따른 전착막의 외관관찰 결과 전류밀도의 증가와 함께 상대적으로 많은 피막이 형성되었고, 용해시킨 기체에 의해 더 치밀하고 두터운 피막이 형성됨을 확인할 수 있었다. 성분 및 결정구조 분석 결과 $Mg(OH)_2$ 성분의 Brucite 및 $CaCO_3$ 성분의 Calcite 및 Aragonite 구조를 확인하였으며, 용해시킨 기체의 영향으로 $CaCO_3$ 성분의 Aragonite 구조가 상대적으로 많이 검출되었다. 밀착성 및 내식성 평가를 실시한 결과 해수 중 용해시킨 기체에 의해 제작한 시편의 경우 견고하고 화학적 친화력이 높은 Aragonite 결정이 표면을 치밀하게 덮어 전해질로부터 산소와 물의 침입을 차단하는 역할을 하여 기체를 용해시키지 않은 3 및 $5A/m^2$ 보다 비교적 우수한 밀착성 및 내식 특성을 보이는 것으로 사료된다.

  • PDF

A Study on Characteristics of Precipitated Calcium Carbonate Prepared by the Nozzle Spouting Method (분사법으로 제조된 침강성 탄산칼슘 특성에 관한 연구)

  • Park, Joo-Won;Kim, Joon-Seok;Ahn, Ji-Whan;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Precipitated calcium carbonate (PCC) was prepared in a cylindrical reactor by the nozzle spouting method. The reactor was filled with $CO_2$ and $Ca(OH)_2$ suspensions were circulated through a nozzle to prepare PCC. This method has several advantages such as provision of large contact area between suspension and $CO_2$ and production of large number of nuclei in short time. By changing suspension concentrations, suspension temperature, flow rates of $CO_2$ and nozzle sizes, PCC from homogeneously dispersed $0.1{\mu}m$ to heterogeneous $0.3{\mu}m$ can be obtained. According to XRD analyses, most PCC formed was calcite with small amount of aragonite depending on the reaction conditions. Usually, the reaction proceeded at high pH and electric conductivities initially. Then, pH and electric conductivities decreased rapidly to the saturation condition. Results indicated that the specific conditions (temperature: $25^{\circ}C$, suspension concentration: 0.5 wt%, $CO_2$ flow rate: 1 L/min, nozzle size: 0.4 mm) were required to prepare uniform particle size (particle diameter: $0.1{\mu}m$) of PCC.