• Title/Summary/Keyword: arabidopsis

Search Result 819, Processing Time 0.025 seconds

Characteristics of Agronomy Traits to Transgenic Rice Selected by Molecular Breeding Method (분자육종기법에 의해 선발된 형질전환 벼 계통의 작물학적 특성)

  • Lee, Hyun-Suk;Kang, Hyun-Goo;Park, Young-Hie;Jung, Hee-Young;Kim, Chang-Kil;Han, Jeung-Sul;Sohn, Jae-Keun;Kim, Kyung-Min;Park, Gyu-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.388-394
    • /
    • 2008
  • This study was carried out to develop new cultivars using the $T_5$ generation of transformed rice by PCR analysis with DNA marker in each generation $(from\;T_3\;to\;T_5)$. In the previous study, we successfully developed the transgenic rice plants over-expressing the Arabidopsis $H^+/Ca^{2+}$ antiporter CAX 1 (accession no. U57411) gene. The calcium concentration in brown rice of transgenic plants was higher than that of donor plants, Iipum, and was selected 3 lines out of 25 lines at cultured GMO field. The major agronomic traits such as culm length, panicle length and panicle number of 3 lines at transgenic plants $(T_5)$ were similar to wild type. Also these lines appeared to have disease resistance to rice blast, cold resistance as compared with donor types. The grain shape was similar to donor plant, however, the 1000 grain weight of brown rice was different from transgenic plants. These finding would be used for basic data of new variety registration.

Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) (배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립)

  • Kim, Soo-Yun;Yu, Hee-Ju;Kim, Jeong-Ho;Cho, Myeong-Cheoul;Park, Mehea
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • Binary trans-activation (pOp/LhG4) system is one of the regulatory systems of transgene expression. The target gene expression is achieved by crossing the reporter plants with an activator in this system. In this study, we used the features of this system in Chinese cabbage as a way to protect genetic resources and new varieties. To establish pOp/LhG4 system in Chinese cabbage, we designed an activator (35SLhG41300), and reporter constructs (pOpGUSBart) and co-transformed using Agrobacterium. The transgenic plants were selected by antibiotics and the functional activity of pOp/LhG4 system was confirmed by GUS expression. To induce the tissue-specific function, we constructed pOp/LhG4 system (795LhGBart) using female tissue specific promoter (ProAt1g26795) of Arabidopsis. Co-transformed transgenic plants clearly showed tissue specific expression in Arabidopsis. The results suggest the possibility of the system's application of $F_1$ generation can be restricted by expressing the target gene to protect a new variety and genetic resource in Chinese cabbages.

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.

Expression of gus and gfp Genes in Ggrlic (Allium sativum L.) Cells Following Particle Bombardment Transformation

  • Lacorte, Cristiano;Barros, Daniella
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.135-142
    • /
    • 2000
  • The activity of promoter sequences was evaluated in garlic cells using the $\beta$-glucuronidase (GUS) gene as a reporter. Histochemical GUS assay indicated transient GUS activity in leaf, callus and root cells 48 hours after particle bombardment transformation. Quantitative fluorometric assays in extracts of transformed leaves demonstrated that the CsVMV promoter induced the highest level of gene expression, which was, on average, ten fold the level induced by CaMV35S and by the Arabidopsis Act2 promoters and two fold the level expression observed with a construct containing a double CaMV35S plus the untranslated leader sequence from AMV. No activity or very low levels were observed when cells were transformed with plasmids rontaining the typical monocot promoters, Actl, from rice or the Ubi-1, from maize. The green fluorescent protein (GFP) was also tested as a marker gene for garlic transformation. Intense fluorescence was observed in leaf, callus and root cells transformed with a construct containing the gfp gene under control of the CaMV35 Promoter. No fluorescence was detected when the gfp was under control of the Ubi-1 promoter.

  • PDF

Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure

  • Nam, Ki Jung;Kim, Hyo-Jeong;Nam, Kyong-Hee;Pack, In Soon;Kim, Soo Young;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Background: Plants over-expressing Arabidopsis ABF3 (abscisic acid-responsive element-binding factor 3) have enhanced tolerance to various environmental stresses, especially drought. Using terminal restriction fragment length polymorphism (T-RFLP) analysis, we compared the rhizosphere-associated structures of microbial communities for transgenic potato containing this gene and conventional "Jopoong" plants. Results: During a 2-year field experiment, fungal richness, evenness, and diversity varied by year, increasing in 2010 when a moderate water deficit occurred. By contrast, the bacterial richness decreased in 2010 while evenness and diversity were similar in both years. No significant difference was observed in any indices for either sampling time or plant line. Although the composition of the microbial communities (defined as T-RF profiles) changed according to year and sampling time, differences were not significant between the transgenic and control plants. Conclusions: The results in this study suggest that the insertion of ABF3 into potato has no detectable (by current T-RFLP technique) effects on rhizosphere communities, and that any possible influences, if any, can be masked by seasonal or yearly variations.

misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny

  • Ko, Young-Joon;Kim, Jung Sun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.128-135
    • /
    • 2017
  • As next-generation sequencing technologies have advanced, enormous amounts of whole-genome sequence information in various species have been released. However, it is still difficult to assemble the whole genome precisely, due to inherent limitations of short-read sequencing technologies. In particular, the complexities of plants are incomparable to those of microorganisms or animals because of whole-genome duplications, repeat insertions, and Numt insertions, etc. In this study, we describe a new method for detecting misassembly sequence regions of Brassica rapa with genotyping-by-sequencing, followed by MadMapper clustering. The misassembly candidate regions were cross-checked with BAC clone paired-ends library sequences that have been mapped to the reference genome. The results were further verified with gene synteny relations between Brassica rapa and Arabidopsis thaliana. We conclude that this method will help detect misassembly regions and be applicable to incompletely assembled reference genomes from a variety of species.

Expression of Arabidiopsis CAX4 in tomato fruits increases calcium level with no accumulation of other metallic cations

  • Jeong, Se-Woon;Han, Jeung-Sul;Kim, Kyung-Min;Oh, Jung-Youl;Kim, Byung-Oh;Kim, Chang-Kil;Chung, Jae-Dong
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.337-343
    • /
    • 2008
  • We generated transgenic tomato plants with Arabidopsis thaliana $H^+$/cation exchanger gene (C4X4) by Agrobactrium-mediated transformation. We confirmed transgene copy number and transcription by Southern and Northern blot analyses. The intact CAX4-expressing tomato (Lycopersicon esculentum) fruits contained 63-71% more calcium ($Ca^{2+}$) than wild-type fruits. Moreover, ectopic expression of C4X4 in tomato fruits did not show any significant increase of the four kinds of metallic cations analyzed ($Mg^{2+}$, $Fe^{2+}$, $Mn^{2+}$, and $Cu^{2+})$. The C4X4-expressing tomato plants including their fruits did not show any morphological alternations during whole growth period. These results suggest the enhanced Ca-substrate specificity of CAX4 exchanger in tomato. Therefore, intact CAX4 exchanger can be a useful tool for $Ca^{2+}$ nutrient enrichment of tomato fruits with reduced accumulation of undesirable cations.

Characterization of A cDNA encoding A Novel Phenazine Compound in Hot Pepper

  • Kim, Ukjo;Lee, Sang-Jik;Lee, Mi-Yeon;Park, Soon-Ho;Yang, Seung-Gyun;Harn, Chee-Hark
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.109.1-109
    • /
    • 2003
  • From the PMMV (pepper mild mottle virus)-inducible ESTs differentially expressed in Capsicum chinense PI257284, we isolated a full-length cDNA (CcPHZF: Capsicum chinense phenazine), encoding a phenazine biosynthesis protein which catalyzes the hydroxylation of phenozine-1-carboxylic acid to 2-hydroxyphenazine-1-carboxylic acid. Phenazine compound has been known to exhibit broad-spectrum of antibiotic activity against various species of bacteria and fungus. The entire region of CcPHZF is 879 bp in length and the open reading frame predicted a polypeptide of 292 amino acids. The homolog of CcPHZF is not Present in database except clones of AC004044 and NM100203 from Arabidopsis with 58 and 59%, respectively. Genomic Southern analysis indicated that the pepper genome contains a single copy of CcPHZF. The CcPHZF was strongly induced in the pepper leaves 3 days after PMMV treatment, when HR occurs on the leaf surface. Characterization of CcPHZF is underway to investigate if the CcPHZF is related to disease resistance against pathogens.

  • PDF

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Characterization of an Abiotic Stress-inducible Dehydrin Gene, OsDhn1, in Rice (Oryza sativa L.)

  • Lee, Sang-Choon;Lee, Mi-Yeon;Kim, Soo-Jin;Jun, Sung-Hoon;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.212-218
    • /
    • 2005
  • A full-length 1.1 kb cDNA, designated Oryza sativa Dehydrin 1 (OsDhn1), was isolated from the seed coat of rice. The deduced protein is hydrophilic and has three K-type and one S-type motifs (SK3-type), indicating that OsDhn1 belongs to the acidic dehydrin family, which includes wheat WCOR410 and Arabidopsis COR47. Expression of OsDhn1 was strongly induced by low temperature as well as by drought. Induction of OsDhn1 by cold stress was clearcut in the roots of seedlings and the epidermis of palea and lemma. OsDhn1 was also up-regulated in UBI::CBF1/DREB1b transgenic plants indicating that it is regulated by the CBF/DREB stress signaling pathway.