• 제목/요약/키워드: aquifer

Search Result 751, Processing Time 0.025 seconds

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Saltwater Intrusion Modeling in the Aquifer Bounded by Manila Bay and Parañaque River, Philippines

  • Insigne, Maria Sharlene L.;Kim, Gyeong-Seok
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The continual extraction and indiscriminante use of groundwater for residential sectors could cause a decrease in the groundwater level in Para$\tilde{n}$aque river and Las Para$\tilde{n}$aque City; and allows saltwater to penetrate into the aquifer due to the proximity of Manila Bay. This study models the present condition and extent of saltwater intrusion in the aquifer bounded by Para$\tilde{n}$aque river River and Manila Bay. The model is simulated using a 3D finite element modeling software (FEMWATER) that is capable of modeling the groundwater flow condition in the aquifer. Moreover, the model can also be used to predict the future condition of the aquifer for better groundwater management. This study aims to raise public awareness of the extent of the problem and the possible side effects incurred. The model will serve as a basis for further studies on remediation techniques and saltwater intrusion control in the coastal aquifer of Para$\tilde{n}$aque river City.

Aquifer Parameter Identification and Estimation Error Analysis from Synthetic and Actual Hydraulic Head Data (지하수위 자료를 이용한 대수층의 수리상수 추정과 추정오차 분석)

  • 현윤정;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.83-93
    • /
    • 1996
  • A method is proposed to estimate aquifer parameters in a heterogeneous and anisotropic aquifer under steady-state groundwater flow conditions on the basis of maximum likelihood concept. Zonation method is adopted for parameterization, and estimation errors are analyzed by examining the estimation error covariance matrix in the eigenspace. This study demonstrates the ability of the proposed model to estimate parameters and helps to understand the characteristics of the inverse problem. This study also explores various features of the inverse methodology by applying it to a set of field data of the Taegu area. In the field example, transmissivities were estimated under three different zonation patterns. Recharge rates in the Taegu area were also estimated using MODINV which is an inverse model compatible with MODFLOW.The estimation results indicate that anisotropy of aquifer parameters should be considered for the crystalline rock aquifer which is the dominant aquifer system in Korea.

  • PDF

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

Effects of Wave Action on Seawater Intrusion in Coastal Aquifer and Mitigation Strategies (파랑작용이 해안대수층의 해수침투에 미치는 영향 및 저감방안)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.47-59
    • /
    • 2017
  • This study conducted numerical simulations using LES-WASS-3D ver. 2.0 to analyze the seawater intrusion characteristics of the incident waves in a coastal aquifer. LES-WASS-3D directly analyzed the nonlinear interaction between the seawater and freshwater in a coastal aquifer, as well as the wave-current interaction in the coastal area. First, the LES-WASS-3D results were compared with the existing experimental results for the mean water level under wave action in the coastal aquifer and seawater penetration into the coastal aquifer. The mean water level, shape and position of the seawater-freshwater interface, and intrusion distance were well implemented in the results. This confirmed the validity and effectiveness of LES-WASS-3D. The overall seawater penetration distance increases in the coastal aquifer as a result of wave set-up and run-up in the swash zone caused by continuous wave actions, and it increases with the wave height and period. Furthermore, a numerical verification was performed by comparing the suggested existing structure and newly suggested curtain wall as a measure against seawater penetration. An existing underground dam showed a better effect with increased height. Additionally, the suggested curtain wall had a better effect when the embedded depth was increased.

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

Evaluation of Contaminant Retardation Capacities of Bank Aquifer Materials (강변 대수층 매질 시료의 오염물질 지연능 평가)

  • Kim, Jae Young;Oh, Dong Ik;Park, Dong Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.62-71
    • /
    • 1999
  • The containment retardation capacities of four different aquifers were evaluated in a preliminary study for development of bank filtration in the Young San river area. $NO_3-N$, $NO_2-N$, $NH_4^+-N$, Fe, Mn, phenol, and chloride were selected as the target contaminants and a nonreactive tracer, respectively. Batch isotherm tests were conducted to measure the partition coefficients of the target contaminants. The mass transport parameters of nonreactive tracer were estimated from column tests. From the results of bath isotherm tests, it was shown that lower stream aquifer materials have greater partition coefficients of $NO_3-N$, $NH_4^+-N$, Mn, and phenol than the upper stream aquifer materials; however, there was no significant position-dependent trend for Fe. All aquifer materials tested have the same range of partition coefficients for $NO_2-N$. Column tests showed that the molecular diffusion of Cl- was much less than the mechanical dispersion; and there was no significant difference between the estimated dispersivities of tested aquifer materials. Consequently, it seems that the difference in the containment retardation capacities between four aquifers tested in this study would primarily result not from hydrodynamic dispersion but from partitioning.

  • PDF

Riverbank Filtration Well Development for a Heat Source/Sink of Ground Water Heat Pumps (시설원예 냉난방을 위한 온도차에너지 열원용 충적대수층 강변여과수 개발)

  • Cho, Yong;Lee, Nam Young;Lee, Song Ee;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.1-171.1
    • /
    • 2010
  • Riverbank filtration wells have been developed to supply a heat source/sink of water in the alluvium aquifer to ground water heat pumps for cooling and heating of a green house. In order to look for an appropriate site to carry out the research, two sites of Jinju and Gumi areas were investigated. In the results of the electrical resistivity surveys, Jinju and Gumi areas have the alluvium aquifer in the depth of 6~17 m and 10~20 m under the ground respectively. Two boreholes have been drilled in each site of both areas. The averaged water level at Jinju site is about 3 m under the ground, and 3.5 m and 6.5 m of sandy gravel aquifer layers are existed in each site. While Gumi site has 10 m water level and 2.5 m and 4.6 m of sandy gravel aquifer. Therefore, it is expected that $1,000m^3$/day of water could be withdrawn at Jinju site rather than Gumi site.

  • PDF

IRF-k kriging of electrical resistivity data for estimating the extent of saltwater intrusion in a coastal aquifer system

  • Shim B. O.;Chung S. Y.;Kim H. J.;Sung I. H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.352-361
    • /
    • 2003
  • We have evaluated the extent of saltwater intrusion from electrical resistivity distribution in a coastal aquifer system in the southeastern part of Busan, Korea. This aquifer system is divided into four layers according to the hydrogeologic characteristics and the horizontal extent of intruded saltwater is determined at each layer through the geostatistical interpretation of electrical resistivity data. In order to define the statistical structure of electrical resistivity data, variogram analysis is carried out to obtain best generalized covariance models. IRF-k (intrinsic random function of order k) kriging is performed with covariance models to produce the plane of spatial mean resistivities. The kriged estimates are evaluated by cross validation to show a good agreement with the true values and the statistics of cross validation represented low errors for the estimates. In the resistivity contour maps more than 5 m below the surface, we can see a dominant direction of saltwater intrusion beginning from the east side. The area of saltwater intrusion increases with depth. The northeast side has low resistivities less than 5 ohm-m due to the presence of saline water in the depth range of 20 m through 70 m. These results show that the application of geostatistical technique to electrical resistivity data is useful for assessing saltwater intrusion in a coastal aquifer system.

  • PDF