• Title/Summary/Keyword: aquaculture system

Search Result 594, Processing Time 0.031 seconds

Cost Analysis Model according to Mortality in Land-based Aquaculture (육상수조 어류양식 생존율에 따른 비용분석모형)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • Fish mortality is the most important success factor in aquaculture management. To analyze the effect of mortality considering biological and economic condition is a important problem in land-based aquaculture. This study is aimed to analyze the effect of mortality for duration of cultivation in land-based aquaculture. This study builds the mathematical model that finds the value of decision variable to minimize cost that sums up the water pool usage cost, sorting cost, fingerling cost and feeding cost under critical standing corp constraint. The proposed mathematical model involves many aspects, both biological and economical: (1) number of fingerlings (2) timing and number of batch splitting event, based on (3) fish growth rate, (4) mortality, and (5) several farming expense. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

Productivity of Aquaculture Facility Utilization (양식장 이용에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Fish stocking is important element of land-based aquaculture management. To maintain constant stocking rate considering biological and economic condition is a convenient strategy in intensive aquaculture. This study is aimed to analyze the effect of over-stocking(more than aquaculture capacity) for certain periods of time. This study make the mathematical decision making model that finds the value of decision variable to minimize cost that sums up the water pool usage cost and sorting cost under critical standing corp constraint. The proposed mathematical decision making model was applied to 12 sample combination of sorting cost and the number of fish on the Oliver flounder culture farms. If a immature fish can be sold for high price than farming cost, restricted over-stocking resulted in a improvement of economic performance. When extensive comparable biological and market data become available, analysis model can be widely applied to yield more accurate results.

Effect on Eel Anguilla japonica and Crop Growth by the Development of a Biofloc Technology (BFT) Aquaponic System (바이오플락 기반 아쿠아포닉스 시스템 개발에 의한 뱀장어(Anguilla japonica)와 재배작물의 성장에 미치는 영향)

  • Hwang, Ju-Ae;Lee, Jeong-Ho;Park, Jun Seong;Choe, Jong Ryeol;Lee, Donggil;Kim, Hyeongsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.418-425
    • /
    • 2021
  • The effects of an aquaponic system based on biofloc technology (BFT-AP) were analyzed for eel Anguilla japonica as aquaculture species and caipira Lactuca sativa as the cultivated crops. The rate of weight gain rate by the eels was 178% (BFT-AP 200 head) > 136% (BFT-AP 100 head) > 100% (BFT). The eel body weight in the BFT-AP (200 head) significantly increased when compared to the BFT only eel group (P<0.05). The weight of the upper layer of caipira was 91±8.5 g (200 head) > 90±8.9 g (100 head) > 48±8.3 g (Hydroponic crop, HP). The crop growth in all BFT-AP groups was higher than the control, the hydroponic group. The total ammonia nitrogen (TAN) and NO2--N concentrations decreased in the BFT-AP group when compared to the BFT group. It was possible to remove nitric acid from the aquaponics system and reuse it as eel rearing water. Although some nutrient concentrations were low in BFT when compared to HP, the nutrient concentration was sufficient for plant growth. The results show that BFT has the potentially to provide a sustainable aquaponic system.

Sand Culture Using Recirculated Aquaculture Water (양어사육수를 이용한 사경재배)

  • 김기덕;이병일;강용구;문보흠;홍상근;홍석우;배용수
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • In order top investigate the growth of water dropwort grown by sandculture irrigated with recirculated tilapia aquaculture water, these experiments were carried out. Fish(tilapia) production and biofiltration provided by sand cultured water dropwort(Oenanthe stolonifera DC.) were linked in a closed system of recirculation water. Water dropwort was irrigated with water drawn from the tilapia tank and drainage from sand beds was returned to the fish tank. The temperature, pH and EC of tilapia culture water were stable. The growth of water dropwort grown by sandculture with aquaculture water was normal. Microbial activity of the biofilterbed irrigated by tilapia rearing water was higher than that of biofilterbed irrigated by tapwater. The feasibility of an integrated, recirculatory system for concurrent production of water dropwort and fish with no additional fertilization application was demonstrated.

  • PDF

An Implementation of RFID Feeding History System with Improved Tagging Methods in land-based Aquaculture Farms (육상 수조식 양식장에서 개선된 태깅 방법에 의한 RFID 급이 이력 시스템 구현)

  • Ye, Seoung-Bin;Jung, Sung-Ju;Ceong, Hee-Taek;Han, Soon-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.745-753
    • /
    • 2010
  • Many studies using RFID which can identify the movement of targeted objects has been conducted actively. In this paper, we propose improved tagging method to check exactly the amount of fish feed by the aquaculture tank in a land-based aquaculture farm and design the RFID feeding system to perform auto feeding history. Also, we implement the prototype system which it includes development program for auto-identification and auto-recording and self-made RFID feeding cart equipped the weight device, RFID reader, control module and display device.

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Complete genome sequence of Flavobacteriaceae strain KCTC 52651 isolated from seawater recirculating aquaculture system (해수 순환여과양식시스템에서 분리된 Flavobacteriaceae 균주 KCTC 52651의 유전체 분석)

  • Kim, Young-Sam;Jeon, Young Jae;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.174-176
    • /
    • 2019
  • A novel bacterium, designated strain RR4-38 (= KCTC 52651 = DSM 108068), belonging to the family Flavobacteriaceae was isolated from a biofilter in the seawater recirculating aquaculture system in South Korea. A single complete genome contig which is 3,182,272 bp with 41.9% G+C content was generated using PacBio RS II platform. The genome includes 2,829 protein-coding genes, 6 rRNA genes, 38 tRNA genes, 4 non-coding RNA genes, and 9 pseudogenes. The results will provide insights for understanding microbial activity in the seawater recirculating aquaculture system.

Solids removal by foam fractionator in simulated seawater aquarium system

  • Lei Peng;Jo, Jae-yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.219-220
    • /
    • 2003
  • The success of recirculating system depends largely on the treatment efficiency of waste generated in the system. fine solids were suspected to be responsible for fish kill in a recirculating system. Clogging of biofilter may be induced by high solids concentration in recirculating systems. Also, the solids could generate more ammonia nitrogen and oxygen demand if not removed out of recirculating system as soon as possible (Weeks et al., 1992). (omitted)

  • PDF

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Physiological Responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) Exposed to High Ammonium Effluent in a Seaweed-based Integrated Aquaculture System

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Seo, Tae-Ho;Shin, Jong-Ahm;Chung, Ik-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • Porphyra yezoensis is known to act as a biofilter against nutrient-rich effluent in seaweed-based integrated aquaculture systems. However, few studies have examined its physiological status under such conditions. In this study, we estimated the photosynthetic activity of P. yezoensis by chlorophyll fluorescence of PSII (${\Delta}F/F'm$ and relative $ETR_{max}$) using the Diving-PAM fluorometer (Walz, Germany). In addition, bioremediation capacity, tissue nutrients, and C:N ratio of P. yezoensis were investigated. The ammonium concentration in seawater of seaweed tank 4 decreased from $72.1{\pm}2.2$ to $33.8{\pm}0.4{\mu}M$ after 24 hours. This indicates the potential role of P. yezoensis in removing around 43% of ammonium from the effluents. Tissue carbon contents in P. yezoensis were constant during the experimental period, while nitrogen contents had increased slightly by 24 hours. In comparison with the initial values, the ${\Delta}F/F'm$ and $rETR_{max}$ of P. yezoensis had increased by about 20 and 40%, respectively, after 24 hours. This indicates that P. yezoensis condition improved or remained constant. These results suggest that chlorophyll fluorescence is a powerful tool in evaluating the physiological status of seaweeds in a seaweed-based integrated aquaculture system.