Browse > Article
http://dx.doi.org/10.5657/KFAS.2021.0418

Effect on Eel Anguilla japonica and Crop Growth by the Development of a Biofloc Technology (BFT) Aquaponic System  

Hwang, Ju-Ae (Advanced Aquaculture Research Center, National Institute of Fisheries Science)
Lee, Jeong-Ho (Fish Genetics and Breeding research Center, National institute of Fisheries Science)
Park, Jun Seong (Advanced Aquaculture Research Center, National Institute of Fisheries Science)
Choe, Jong Ryeol (Advanced Aquaculture Research Center, National Institute of Fisheries Science)
Lee, Donggil (Advanced Aquaculture Research Center, National Institute of Fisheries Science)
Kim, Hyeongsu (Advanced Aquaculture Research Center, National Institute of Fisheries Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.54, no.4, 2021 , pp. 418-425 More about this Journal
Abstract
The effects of an aquaponic system based on biofloc technology (BFT-AP) were analyzed for eel Anguilla japonica as aquaculture species and caipira Lactuca sativa as the cultivated crops. The rate of weight gain rate by the eels was 178% (BFT-AP 200 head) > 136% (BFT-AP 100 head) > 100% (BFT). The eel body weight in the BFT-AP (200 head) significantly increased when compared to the BFT only eel group (P<0.05). The weight of the upper layer of caipira was 91±8.5 g (200 head) > 90±8.9 g (100 head) > 48±8.3 g (Hydroponic crop, HP). The crop growth in all BFT-AP groups was higher than the control, the hydroponic group. The total ammonia nitrogen (TAN) and NO2--N concentrations decreased in the BFT-AP group when compared to the BFT group. It was possible to remove nitric acid from the aquaponics system and reuse it as eel rearing water. Although some nutrient concentrations were low in BFT when compared to HP, the nutrient concentration was sufficient for plant growth. The results show that BFT has the potentially to provide a sustainable aquaponic system.
Keywords
Biofloc technology; Anguilla japonica; Aquaponics; Caipira;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rakocy JE. 2012. Aquaponics-integrating fish plant culture in aquaculture production systems. In: Aquaculture production systems. Tidwell JH, ed. Wiley-Blackwell, Hoboken, NJ, U.S.A., 344-386. https://doi.org/10.1002/9781118250105.ch14.
2 Thorarinsdottir RI. 2015. Aquaponics guidelines. Haskolaprent, Reykjavik, Iceland, 33-39.
3 Tyson Richard V, Treadwell Danielle D and Simonne Eric H. 2011. Opportunities and challenges to sustainability in aquaponic systems. Horttechnology 21, 6-13. https://doi.org/10.21273/HORTTECH.21.1.6.   DOI
4 Crab R, Defoirdt T, Bossier P and Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356, 351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046.   DOI
5 Davidson K, Pan M, Hu W and Poerwanto D. 2012. Consumers' willingness to pay for aquaculture fish products vs. Wildcaught seafood- a case study in Hawaii. Aquaculture Economic Management 16, 136-154. https://doi.org/10.1080/13657305.2012.678554.   DOI
6 Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture stystem. Aquacult 176, 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X.   DOI
7 Avnimelech Y. 2012. Biofloc technology: a practical guidebook. The World Aquaculture Society Press, Baton Rouge, LA, U.S.A., 181.
8 Avnimelech Y, De-Schryver P, Emmereciano M, Kuhn Ray A and Taw N. 2015. Overview of aquaculture systems. In: Biofloc technology. Tomasso J, ed. The World Aquaculture Society Press, Baton Rouge, LA, U.S.A., 9-20.
9 Bailey DS and Ferrarezi RS. 2017. Valuation of vegetable crops produced in the UVI commercial aquaponics system. Aquac Rep 7, 77-82. https://doi.org/10.1016/j.aqrep.2017.06.002.   DOI
10 Choi JY, Park JS, Kim HS, Hwang JA, Lee DG and Lee JH. 2020. Assessment of water quality parameters during a course of applying biofloc technology (BFT). JFMSE 35, 1632-1638. http://doi.org/10.13000/JFMSE.2020.12.32.6.1632.   DOI
11 FAO (Food and Agriculture Organization). 2014. Small-scale aquaponic food production integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper, FAO, Rome, Italy, 1-19.
12 Duncan DB. 1955. Multiple-range and multiple F tests. Biometrics 11, 1-42. https://doi.org/10.2307/3001478.   DOI
13 Emerenciano M, Ballester ELC, Cavalli RO and Wasielesky W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43, 447-457. https://doi.org/10.1111/j.1365-2109.2011.02848.x.   DOI
14 Endut A, Jusoh A, Ali N, Nik WBW and Hassan A. 2010. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponics system. Bioresour Technol 101, 1511-1517. https://doi.org/10.1016/j.biortech.2009.09.040.   DOI
15 FAO (Food and Agriculture Organization). 2020. The state of world fisheries and aquaculture. FAO, Rome, Italy, 1-224.
16 Wang G, Yu E, Xie J, Yu D, Li Z, Luo W and Zheng Z. 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp Carassius auratus. Aquaculture 443, 98-104. https://doi.org/10.1016/j.aquaculture.2015.03.015.   DOI
17 Zhen H, Lee JW, Chandran K, Kim SP and Brotto AC. 2015. Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol 188, 92-98. https://doi.org/10.1016/j.biortech.2015.01.013.   DOI
18 Diver S. 2006. Aquaponics-integration of hydroponic with aquaculture. Appropriate technology transfer fir rural areas (ATTRA). Fayetteville, NC, U.S.A., 1-28.
19 Amirkolaie AK. 2008. Environmental impact of nutrient discharged by aquaculture waste water on the Haraz River. J Fish Aquat Sci 3, 275-279. https://doi.org/10.3923/jfas.2008.275.279.   DOI
20 Vinatea L, Malpartida Carbo R, Andree, KB, Gisbert E and Estevez Al. 2018. A comparison of recirculation aquaculture systems versus biofloc technology culture system for ongrowing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture 482, 155-161. https://doi.org/10.1016/j.aquaculture.2017.09.041.   DOI
21 Mota VC, Peter L, Catrarina IM and EP HE. 2015. The effect of nearly closed RAS on the feed intake and growth of nile tilapia Oreochromis nilotiscus, African catfish Clarias gariepinus and European eel Anguilla anguilla. Aquac Eng 68, 1-5. https://doi.org/10.1016/j.aquaeng.2015.06.002.   DOI
22 Kim SK, Pang Z, Seo HC, Cho YR, Samocha T and Jang IK. 2014. Effect of bioflocs on growth and immune activity of Pacific white shrimp Litopenaeus vannamei Postlarvae. Aquac Res 45, 362-371. https://doi.org/10.1111/are.12319.   DOI
23 Kim SR, Jang JW, Kim BJ, Jang IK, Lim HJ, Kim SK, Seo HC, Cho YR, Samocha T and Jang IK. 2019. Urban aquaculture of catfish Silurus asotus, using biofloc and aquaponics systems. Korean J Environ Biol 37, 545-553. https://doi.org/10.11626/KJEB.2019.37.4.545.   DOI
24 Lee DH, Kim JY, Lim SR, Kim KB, Kim JM, Hariati, Kim DW and Kim JD. 2020. Effect of crude protein levels in diets containing MKP on water quality and growth of Japanese eels Anguilla japonica and leafy vegetables in a hybrid BFTaquaponic system. Korean J Fish Aquat Sci 53, 606-619. https://doi.org/10.5657/KFAS.2020.0606.   DOI
25 Goddek S, Schmautz Z, Scott B, Delaide B, Keesman KJ, Wuertz S and Junge R. 2016. The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. Agronomy 6, 37. https://doi.org/10.3390/agronomy6020037.   DOI
26 Baxter I. 2015. Should we treat the ionome as a combination of individual elements or should we be deriving novel combined traits?. J Exp Bot 66, 2127-2131. https://doi.org/10.1093/jxb/erv040.   DOI
27 Lee DH, Kim JY, Lim SR, Kim DY, Kim JM, Shin SJ and Kim JD. 2019. Effect of dietary monobasic potassium phosphate levels on water quality and the growth of far eastern catfish Silurus asotus and four leafy vegetables in a hybrid biofloc technology aquaponic system. Korean J Fish Aquat Sci 52, 159-172. https://doi.org/10.5657/KFAS.2019.0159.   DOI
28 Sukardi P, Prayogo NA, Winanto T, Siregar AS and Harisam T. 2018. Nursery I: The effect of stocking density on the performance of glass eels, Anguilla bicolor in the biofloc system. In: 2nd scientific communication in fisheries and marine sciences (SCiFiMaS 2018). E3S Web of Conf 47, 02009. https://doi.org/10.1051/e3sconf/20184702009.   DOI
29 Lee SY and Kim YC. 2019. Water treatment for closed hydroponics systems. J Korean Soc Environ Eng 41, 501-513. https://doi.org/10.4491/KSEE.2019.41.9.501.   DOI
30 Madsen HCK, Buchmann K and Mellergaard S. 2000. Association between trichodiniasis in eel Anguilla Anguilla and water quality in recirculation system. Aquaculture 187, 275-281. https://doi.org/10.1016/S0044-8486 (00)00323-9.   DOI
31 Poli MA, Rodrigo S and Alex Pires DON. 2015. The use of biofloc technology in a south American catfish Rhamdia quelen hatchery: Effect of suspended solids in the performance of larvae. Aquac Eng 66, 17-21. https://doi.org/10.1016/j.aquaeng.2015.01.004.   DOI
32 Rijin JV. 2013. Waste treatment in recirculating aquaculture systems. Aquac Eng 53, 49-56. https://doi.org/10.1016/j.aquaeng.2012.11.010.   DOI
33 Pinho SM, D Molinari, Mello GL, Fitzsimmons KM and Emerenciano MGC. 2017. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol Eng 103, 146-153. https://doi.org/10.1016/j.ecoleng.2017.03.009.   DOI
34 Rajesh Kumar R and Cho JY. 2014. Reuse of hydroponic waste solution. Environ Sci Pollut Res I 16, 9569-9577. https://doi.org/10.1007/s11356-014-3024-3.   DOI
35 Perez-Fuentes JA, Hernandez MP, Carlos I and Perez-Rostro JA. 2016. C:N ratios affect nitrogen removal and production of nile tilapia Oreochromis niloticus raised in abiofloc system under hight density cultivation. Aquaculture 452, 247-251. https://doi.org/10.1016/j.aquaculture.2015.11.010.   DOI