• Title/Summary/Keyword: approximation with constraints

Search Result 92, Processing Time 0.025 seconds

Construction of Revolved-Surface Design Tools Using Implicit Algebraic Functions (음대수 함수를 이용한 회전체를 위한 곡면 설계 도구의 구현)

  • Park, Sanghun;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1996
  • Many efforts for finding smooth curves and surfaces satisfying given constraints have been made, and interpolation and approximation theories with the help of computers have played an important role in this endeavour. Most research in curve and surface modeling has been largely dominated by the theory of parametric representations. While they have been successfully used in representing physical objects, parametric surfaces are confronted with some problems when objects are represented and manipulated in geometric modeling systems. In recent year, increasing attention has been paid to implicit algebraic surfaces since they are often more effective than parametric surfaces are. In this paper, we summarize the geometric properties and computational processes of objects represented using implicit algebraic functions and explain of the implementation of design tools which can design curves and surfaces of revolution. These surfaces of revolution are played an importance role in effective areas such as CAD and CAM.

  • PDF

An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges (강바닥판교의 개선된 다단계 최적설계 알고리즘)

  • 조효남;이광민;최영민;김정호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.237-250
    • /
    • 2003
  • Since an orthotropic steel deck bridge has large number of design variables and shows complex structural behavior, it would be very difficult and impractical to directly use a Conventional Single Level (CSL) optimization algorithm for its optimum design. Thus, in this paper, an Improved Multi Level Design Synthesis (IMLDS) optimization algorithm is proposed to improve the computational efficiency. In the proposed IMLDS algorithm, a coordination method is introduced to divide the bridge into main girders and orthotropic steel deck with preserving the characteristics of the structural behavior. For an efficient optimization of the bridge, the IMLDS algorithm incorporates the various crucial approximation techniques such as constraints deletion, Automatic Differentiation (AD), stress reanalysis, and etc. In the case of orthotropic steel deck system, optimum design problems are characterized by mixed continuous discrete variables and discontinuous design space. Thus, a modified Genetic Algorithm (GA) is also applied to optimize discrete member design for orthotropic steel deck. From the numerical example, the efficiency and convergency of the IMLDS algorithm proposed in this paper is investigated. It may be positively stated that the IMLDS algorithm will lead to more effective and practical design compared with previous algorithms.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

ADMM algorithms in statistics and machine learning (통계적 기계학습에서의 ADMM 알고리즘의 활용)

  • Choi, Hosik;Choi, Hyunjip;Park, Sangun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1229-1244
    • /
    • 2017
  • In recent years, as demand for data-based analytical methodologies increases in various fields, optimization methods have been developed to handle them. In particular, various constraints required for problems in statistics and machine learning can be solved by convex optimization. Alternating direction method of multipliers (ADMM) can effectively deal with linear constraints, and it can be effectively used as a parallel optimization algorithm. ADMM is an approximation algorithm that solves complex original problems by dividing and combining the partial problems that are easier to optimize than original problems. It is useful for optimizing non-smooth or composite objective functions. It is widely used in statistical and machine learning because it can systematically construct algorithms based on dual theory and proximal operator. In this paper, we will examine applications of ADMM algorithm in various fields related to statistics, and focus on two major points: (1) splitting strategy of objective function, and (2) role of the proximal operator in explaining the Lagrangian method and its dual problem. In this case, we introduce methodologies that utilize regularization. Simulation results are presented to demonstrate effectiveness of the lasso.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.

Adaptive Model-Based Quantization Parameter Decision for Video Rate Control (비디오 비트율 제어를 위한 적응적 모델 기반의 양자화 변수 결정 방법)

  • Kim, Seon-Ki;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.411-417
    • /
    • 2007
  • The rate control is an essential component in video coding to provide better quality under given coding constraints, such as channel capacity, frame rates, etc. In general, source data cannot be described as a single distribution in a video coding, hence it can cause an exhaustive approximation problem. It drops a coding efficiency under weak channel environments, such as mobile communications. In this paper, we design a new quantization parameter decision model that is based on a rate-distortion function of generalized Gaussian distribution. In order to adaptively express various source data distribution, we decide a shape parameter by observing a ratio of samples, which have a small value. For experiment, the proposed algorithm is implemented into H.264/AVC video codec, and its performance is compared with that of MPEG-2 TM5, H.263 TMN8 rate control algorithm. As shown in simulation results, the proposed algorithm provides an improved quality rather than previous algorithms and generates the number of bits closed to the target bits.

Reliability based optimization of spring fatigue design problems accounting for scatter of fatigue test data (피로시험 데이터의 산포를 고려한 스프링의 신뢰성 최적설계)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1319
    • /
    • 2008
  • Fatigue reliability problems are nowadays actively considered in the design of mechanical components. Recently, Dimension Reduction Method using Kriging approximation (KDRM) was proposed by the authors to efficiently calculate statistical moments of the response function. This method, which is more tractable for its sensitivity-free nature and providing the response PDF in a few number of analyses, is adopted in this study for the reliability analysis. Before applying this method to the practical fatigue problems, accuracies are studied in terms of parameters of the KDRM through a number of numerical examples, from which best set of parameters are suggested. In the fatigue reliability problems, good number of experimental data are necessary to get the statistical distribution of the S-N parameters. The information, however, are not always available due to the limited expense and time. In this case, a family of curves with prediction interval, called P-S-N curve, is constructed from regression analysis. Using the KDRM, once a set of responses are available at the sample points at the mean, all the reliability analyses for each P-S-N curve can be efficiently studied without additional response evaluations. The method is applied to a spring design problem as an illustration of practical applications, in which reliability-based design optimization (RBDO) is conducted by employing stochastic response surface method which includes probabilistic constraints in itself. Resulting information is of great practical value and will be very helpful for making trade-off decision during the fatigue design.

  • PDF

An Experimental Study on Punching Shear at the Connection of RC Column Constrained by H-Beam with 井 Shape (정(井)자형 H형강으로 구속된 철근콘크리트 기둥접합부의 뚫림전단에 관한 실험적 연구)

  • Kim, Lyang-Woon;Lee, Soo-Kueon;Lee, Jung-Yoon;Chung, Chang-Yong;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • Two parallel wide flange built-up beams are widely used as struts in resisting lateral earth pressure because of the effectiveness in structure and construction. In a certain structural system, the reinforced concrete columns are to be placed at the intersection where two perpendicular beams cross each other, the square part of the joint being filled with concrete. In the punching shear mechanism of the beam-column joint, the radial deformation caused due to shear cracking will be constrained by the spring action of the squarely encompassed beam flanges. As a result, the punching shear strength of the joint concrete can be expected to be increased. To verify this phenomenon experiments have been performed for various constraining elements and distances between columns and constraints. Test results are compared with the approximation analysis formula which has been proposed in this study, based on the code formula. The results calculated by the proposed equation show comparatively close agreement with the punching shear strength detected from the test.

Decoupled Parametric Motion Synthesis Based on Blending (상.하체 분리 매개화를 통한 블렌딩 기반의 모션 합성)

  • Ha, Dong-Wook;Han, Jung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-444
    • /
    • 2008
  • The techniques, which locate example motions in abstract parameter space and interpolate them to generate new motion with given parameters, are widely used in real-time animation system for its controllability and efficiency However, as the dimension of parameter space increases for more complex control, the number of example motions for parameterization increases exponentially. This paper proposes a method that uses two different parameter spaces to obtain decoupled control over upper-body and lower-body motion. At each frame time, each parameterized motion space produces a source frame, which satisfies the constraints involving the corresponding body part. Then, the target frame is synthesized by splicing the upper body of one source frame onto the lower body of the other. To generate corresponding source frames to each other, we present a novel scheme for time-warping. This decoupled parameterization alleviates the problems caused by dimensional complexity of the parameter space and provides users with layered control over the character. However, when the examples are parameterized based on their upper body's spatial properties, the parameters of the examples are varied individually with every change of its lower body. To handle this, we provide an approximation technique to change the positions of the examples rapidly in the parameter space.

  • PDF

Animation Generation for Chinese Character Learning on Mobile Devices (모바일 한자 학습 애니메이션 생성)

  • Koo, Sang-Ok;Jang, Hyun-Gyu;Jung, Soon-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.894-906
    • /
    • 2006
  • There are many difficulties to develop a mobile contents due to many constraints on mobile environments. It is difficult to make a good mobile contents with only visual reduction of existing contents on wire Internet. Therefore, it is essential to devise the data representation and to develop the authoring tool to meet the needs of the mobile contents market. We suggest the compact mobile contents to learn Chinese characters and developed its authoring tool. The animation which our system produces is realistic as if someone writes letters with pen or brush. Moreover, our authoring tool makes a user generate a Chinese character animation easily and rapidly although she or he has not many knowledge in computer graphics, mobile programming or Chinese characters. The method to generate the stroke animation is following: We take basic character shape information represented with several contours from TTF(TrueType Font) and get the information for the stroke segmentation and stroke ordering from simple user input. And then, we decompose whole character shape into some strokes by using polygonal approximation technique. Next, the stroke animation for each stroke is automatically generated by the scan line algorithm ordered by the stroke direction. Finally, the ordered scan lines are compressed into some integers by reducing coordinate redundancy As a result, the stroke animation of our system is even smaller than GIF animation. Our method can be extended to rendering and animation of Hangul or general 2D shape based on vector graphics. We have the plan to find the method to automate the stroke segmentation and ordering without user input.