• Title/Summary/Keyword: approximation model

Search Result 1,478, Processing Time 0.03 seconds

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

Analysis of Stem Wave due to Long Breakwaters at the Entrance Channel

  • Kwon, Seong-Min;Moon, Seung-Hyo;Lee, Sang-Heon;Yoo, Jae-Woong;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Recently, a new port reserves deep water depth for safe navigation and mooring, following the trend of larger ship building. Larger port facilities include long and huge breakwaters, and mainly adopt vertical type considering low construction cost. A vertical breakwater creates stem waves combining inclined incident waves and reflected waves, and this causes maneuvering difficulty to the passing vessels, and erosion of shoreline with additional damages to berthing facilities. Thus, in this study, the researchers have investigated the response of stem waves at the vertical breakwater near the entrance channel and applied numerical models, which are commonly used for the analysis of wave response at the harbor design. The basic equation composing models here adopted both the linear parabolic approximation adding the nonlinear dispersion relationship and nonlinear parabolic approximation adding a linear dispersion relationship. To analyze the applicability of both models, the research compared the numerical results with the existing hydraulic model results. The gap of serial breakwaters and aligned angles caused more complicated stem wave generation and secondary stem wave was found through the breakwater gap. Those analyzed results should be applied to ship handling simulation studies at the approaching channels, along with the mooring test.

Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method (유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정)

  • Kim, Sang-Bum;Lee, Wan-Soo;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

High Frequency Acoustic Scattering Analysis of Underwater Target (수중표적에 대한 고주파수 음향산란 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jong-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.528-533
    • /
    • 2005
  • A mono-static high frequency acoustic target strength analysis scheme was developed for underwater targets, based on the far-field Kirchhoff approximation. Au adaptive triangular beam method and a concept of virtual surface were adopted for considering the effect of hidden surfaces and multiple reflections of an underwater target, respectively. A test of a simple target showed that the suggested hidden surface removal scheme is valid. Then some numerical analyses, for several underwater targets, were carried out; (1) for several simple underwater targets, like sphere, square plate, cylinder, trihedral corner reflector, and (2) for a generic submarine model, The former was exactly coincident with the theoretical results including beam patterns versus azimuth angles, and the latter suggested that multiple reflections have to be considered to estimate more accurate target strength of underwater targets.

Impact of playout buffer dynamics on the QoE of wireless adaptive HTTP progressive video

  • Xie, Guannan;Chen, Huifang;Yu, Fange;Xie, Lei
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.447-458
    • /
    • 2021
  • The quality of experience (QoE) of video streaming is degraded by playback interruptions, which can be mitigated by the playout buffers of end users. To analyze the impact of playout buffer dynamics on the QoE of wireless adaptive hypertext transfer protocol (HTTP) progressive video, we model the playout buffer as a G/D/1 queue with an arbitrary packet arrival rate and deterministic service time. Because all video packets within a block must be available in the playout buffer before that block is decoded, playback interruption can occur even when the playout buffer is non-empty. We analyze the queue length evolution of the playout buffer using diffusion approximation. Closed-form expressions for user-perceived video quality are derived in terms of the buffering delay, playback duration, and interruption probability for an infinite buffer size, the packet loss probability and re-buffering probability for a finite buffer size. Simulation results verify our theoretical analysis and reveal that the impact of playout buffer dynamics on QoE is content dependent, which can contribute to the design of QoE-driven wireless adaptive HTTP progressive video management.

Probability subtraction method for accurate quantification of seismic multi-unit probabilistic safety assessment

  • Park, Seong Kyu;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1146-1156
    • /
    • 2021
  • Single-unit probabilistic safety assessment (SUPSA) has complex Boolean logic equations for accident sequences. Multi-unit probabilistic safety assessment (MUPSA) model is developed by revising and combining SUPSA models in order to reflect plant state combinations (PSCs). These PSCs represent combinations of core damage and non-core damage states of nuclear power plants (NPPs). Since all these Boolean logic equations have complemented gates (not gates), it is not easy to generate exact Boolean solutions. Delete-term approximation method (DTAM) has been widely applied for generating approximate minimal cut sets (MCSs) from the complex Boolean logic equations with complemented gates. By applying DTAM, approximate conditional core damage probability (CCDP) has been calculated in SUPSA and MUPSA. It was found that CCDP calculated by DTAM was overestimated when complemented gates have non-rare events. Especially, the CCDP overestimation drastically increases if seismic SUPSA or MUPSA has complemented gates with many non-rare events. The objective of this study is to suggest a new quantification method named probability subtraction method (PSM) that replaces DTAM. The PSM calculates accurate CCDP even when SUPSA or MUPSA has complemented gates with many non-rare events. In this paper, the PSM is explained, and the accuracy of the PSM is validated by its applications to a few MUPSAs.

Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics

  • Liu, Y.X.;Hong, H.P.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.469-482
    • /
    • 2022
  • The generalized extreme value distribution (GEVD) is frequently used to fit the block maximum of environmental parameters such as the annual maximum wind speed. There are several methods for estimating the parameters of the GEV distribution, including the least-squares method (LSM). However, the application of the LSM with the expected order statistics has not been reported. This study fills this gap by proposing a fitting method based on the expected order statistics. The study also proposes a plotting position to approximate the expected order statistics; the proposed plotting position depends on the distribution shape parameter. The use of this approximation for distribution fitting is carried out. Simulation analysis results indicate that the developed fitting procedure based on the expected order statistics or its approximation for GEVD is effective for estimating the distribution parameters and quantiles. The values of the probability plotting correlation coefficient that may be used to test the distributional hypothesis are calculated and presented. The developed fitting method is applied to extreme thunderstorm and non-thunderstorm winds for several major cities in Canada. Also, the implication of using the GEVD and Gumbel distribution to model the extreme wind speed on the structural reliability is presented and elaborated.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

Effects of Demagnetization Field in Patterned Micro-magnetic Film Elements (패턴 된 미크론 자기박막 소자에서의 자기소거장 효과분석)

  • Kim, Ki-Chul;Suh, Jeong-Dae;;Lee, C.S.;Song, Y.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.103-108
    • /
    • 2003
  • A micromagnetic model and a Stoner-Wohlfarth model are used to analyze the effect of demagnetization field in patterned permalloy films. Permalloy films of 20 $\mu\textrm{m}$${\times}$(40 $\mu\textrm{m}$∼200 $\mu\textrm{m}$) are fabricated by DC magnetron sputtering and photo lithography. Measured magnetoresistance data of patterned permalloy films are compared with simulation results. The micromagnetic model gives a better agreement with the measured MR data than the Stoner-Wohlfarth model. Based on the simulation results, we propose a revised approximation formula for dernagnetization field in Stoner- Wohlfarth model for a few fm patterned magnetic films.