• Title/Summary/Keyword: approximation coefficients

Search Result 258, Processing Time 0.026 seconds

2-D & 3-D Calculations for the Effect of Guide Vane of Impulse Turbine

  • Hyun Beom-Soo;MOON Jae-Seung;Hong Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.235-240
    • /
    • 2004
  • This paper deals with the performance analysis of impulse turbine for owe type wave energy conversion device. Numerical analysis was performed using a commercially-available software FLUENT. This parametric study includes the variation of the setting angle of guide vane. Since parametric study at various flaw coefficients requires tremendous amounts of computing time, two-dimensional cascade flaw approximation was employed to find out optimum principal particulars in rather simple manner. Full three-dimensional calculation was also performed for several cases to confirm the validity of two-dimensional approach. Results were compared to other experimental data, for instance Setoguchi et al (2001)'s extensive set of data, and found to be well demonstrating the usefulness of 2-D analysis. Advantages and disadvantages of each method were also evaluated.

  • PDF

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Adaptive Neural Network Control for an Autonomous Underwater Vehicle (신경회로망을 이용한 자율무인잠수정의 적응제어)

  • 이계홍;이판묵;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1023-1030
    • /
    • 2002
  • Since the dynamics of autonomous underwater vehicles (AUVs) are highly nonlinear and their hydrodynamic coefficients vary with different vehicle's operating conditions, high performance control systems of AUVs are needed to have the capacities of teaming and adapting to the variations of the vehicle's dynamics. In this paper, a linearly parameterized neural network (LPNN) is used to approximate the uncertainties of the vehicle dynamics, where the basis function vector of the network is constructed according to the vehicle's physical properties. The network's reconstruction errors and the disturbances in the vehicle dynamics are assumed be bounded although the bound may be unknown. To attenuate this unknown bounded uncertainty, a certain estimation scheme for this unknown bound is introduced combined with a sliding mode scheme. The proposed controller is proven to guarantee that all signals in the closed-loop system are uniformly ultimately bounded (UUB). Numerical simulation studies are performed to illustrate the effectiveness of the proposed control scheme.

A Simplification of Linear System via Frequency Transfer Function Synthesis (주파수 전달함수 합성법에 의한 선형시스템의 간소화)

  • 김주식;김종근;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • This paper presents an approximation method for simplifying a high-order transfer function to a low-order transfer function. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed methods provide better low frequency fit and a computer aided algorithm that estimates the coefficients vector for the numerator and denominator polynomial on the simplified systems from an overdetermined linear system constructed by frequency responses of the original systems. Two examples are given to illustrate the feasibilities of the suggested schemes.

DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC PROBLEMS WITH MIXED BOUNDARY CONDITION

  • Ohm, Mi Ray;Lee, Hyun Yong;Shin, Jun Yong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.585-598
    • /
    • 2014
  • In this paper we consider the nonlinear parabolic problems with mixed boundary condition. Under comparatively mild conditions of the coefficients related to the problem, we construct the discontinuous Galerkin approximation of the solution to the nonlinear parabolic problem. We discretize spatial variables and construct the finite element spaces consisting of discontinuous piecewise polynomials of which the semidiscrete approximations are composed. We present the proof of the convergence of the semidiscrete approximations in $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ normed spaces.

Bayesian Hypothesis Testing in Multivariate Growth Curve Model.

  • Kim, Hea-Jung;Lee, Seung-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.81-94
    • /
    • 1996
  • This paper suggests a new criterion for testing the general linear hypothesis about coefficients in multivariate growth curve model. It is developed from a Bayesian point of view using the highest posterior density region methodology. Likelihood ratio test criterion(LRTC) by Khatri(1966) results as an approximate special case. It is shown that under the simple case of vague prior distribution for the multivariate normal parameters a LRTC-like criterion results; but the degrees of freedom are lower, so the suggested test criterion yields more conservative test than is warranted by the classical LRTC, a result analogous to that of Berger and Sellke(1987). Moreover, more general(non-vague) prior distributions will generate a richer class of tests than were previously available.

  • PDF

The Development of a Model to Predict Beach Evolution (해빈변형 예측 모델의 개발)

  • 안수한;김인철
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • A model is developed to predict the long-term beach evolution near the long groin considering the combined effects of variation of sea level, wave refraction and diffraction. A numerical solution for this problem is solved by considering the equation as a system subject to the boundary condition for longshore transport rate. One possible method is the centered Crank-Nicolson type implicit scheme. The results which ard obtained by applying this numerical model at Songdo beach, Pohang are as follows. Owing to the approximation used in the calculation of the refraction and diffraction coefficients, the discrepancy between the predicted and actual shoreline occurs to the interior of long groin. However, the shape of shoreline at the exterier of long groins agrees well.

  • PDF

A Simulation of the Energy Distribution Function for Electron in CF4, CH4, Ar Gas Mixtures (시뮬레이션에 의한 CF4, CH4, Ar혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f(\varepsilon)$ has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

The Drift Velocity of Electrons in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전자이동속도)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.105-109
    • /
    • 2011
  • Drift Velocity of Electrons in pure $CF_4$, $CH_4$ and mixtures of $CF_4$ and Ar. Have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.