• Title/Summary/Keyword: approximate structural design

검색결과 171건 처리시간 0.022초

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

단순지지 변단면 압축재의 임계하중 (Elastic Critical Laod of Tapered Columns)

  • 홍종국;김순철;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.252-259
    • /
    • 1999
  • One of the most important factors for a proper design of a slender compression member may be the exact determination of the elastic critical load of that member. In the cases of non-prismatic compression member, however, there are times when the exact critical load becomes impossible to determinate if one relies on the neutral equilibrium method or energy principle. Here in this paper, the approximate critical loads of symmetrically or non-symmetrically tapered members are computed by finite element method. The two parameters considered in this numerical analysis are the taper parameter, $\alpha$ and the sectional property parameters, m. The computed results for each sectional property parameter, m are presented in an algebraic equation which agrees with those by F.E.M The algebraic equation can be easily used by structural engineers, who are engaged in structural analysis and design of non-prismatic compression member.

  • PDF

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

Comparative studies of double- and triple-layer space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제8권4호
    • /
    • pp.383-399
    • /
    • 1999
  • In some space truss applications, particularly those with large spans, the choice of a triple-layer system might prove more cast effective than the more commonly used double-layer solution. However, there are currently no clear guidelines as to which system would be more competitive for intermediate span lengths. In this paper, comparisons in terms of the weight, stiffness and number of joints and members are made between the two system types and presented in order to simplify the choice process for the designer. The comparisons are carried out using an approximate analysis technique that is explained in this paper, and checked to be reasonably accurate and suitable for the preliminary design of space trusses.

반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법 (A Structural Design Method Using Ensemble Model of RSM and Kriging)

  • 김남희;이권희
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1630-1638
    • /
    • 2015
  • 많은 산업분야에서 구조설계 시 구조성능을 검토하기 위한 유한요소해석은 필수적인 과정이 되었다. 이와 함께, 컴퓨터의 성능도 급속도로 개선되고 있지만 대형 문제의 경우에는 최적설계기법을 적용하는데 한계가 있다. 이러한 대형 문제의 최적화를 위하여 메타모델을 이용한 근사모델을 이용하고 있다. 근사모델을 생성하는 방법은 곡선맞춤법과 내삽법으로 분류할 수 있는데, 반응표면모델과 크리깅 모델이 대표적인 것이다. 그러나 각 모델은 오버피팅이나 언더피팅이 될 수 있는 단점이 있다. 본 연구에서는 반응표면과 크리깅으로 구성되는 혼합모델에 의한 메타모델을 이용하여 구조설계에 적용하고자 한다. 제안된 방법을 2부재 구조물과 자동차용 아우터타이로드의 구조설계에 적용하였다.

구조 모델링 방법에 따른 지하철 정거장 구조물의 거동 (Structural Behavior of Underground Subway Structures According to Structural Model)

  • 박익태;이환우;김광양
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2005
  • The structural analysis considering the soil-structure interaction is very important in the design process of underground structures located on the site with various soil conditions. In practice, simplified modelling techniques to obtain the approximate solution are used in accordance with the specifications. However, their details are insufficient for practical engineers to obtain the stable solutions and the analysis results of each engineer occasionally my be different in spite of the same problem. In this study, the sensitivity of structural behaviour on the underground structures is analyzed according to the structural modelling techniques of existing specifications. It is performed to obtain the fundamental informations to establish the guide to obtain the stable solutions in practical analysis of the underground structures such as subway structures.

  • PDF

등단면 3경간 연속 곡선격자형교의 휨모멘트 근사해석에 관한 연구 (A Study on the Approximate Analysis of the Bending Moment for the Three-Span Continuous Curved Girder Bridges with Constant Cross Section)

  • 장병순;서상근;차기혁
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.131-142
    • /
    • 1999
  • 뒤틀림 효과를 고려한 곡선보의 일반적 거동은 Vlasov에 의해 제시된 미분 방정식으로 표시된다. 일반적으로 거더의 단면을 결정하는데 가장 큰 영향을 미치는 요인은 휨모멘트이다. 곡선 교량 계획시 곡선격자형교의 단면을 쉽게 가정하기 위해서 본 논문에서는 직선거더와 곡선거더의 휨모멘트비를 제시하였다. 이 비는 중심각 ${\theta}(L/R)$를 변수로 하여 근사식으로 나타내었다. 이 휨모멘트 근사식과 제시된 영향선은 3경간 곡선격자형교를 보다 쉽게 설계하는데 이용될 수 있다.

  • PDF

콘크리트 크리프의 확률론적 거동 해석 (The Analysis of Statistical Behavior in Concrete Creep)

  • 김두환;박종철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.237-246
    • /
    • 2001
  • This study is to measure the creep coefficient by 3 days, 7 days and 28 days in the age when loading for the quality assessment of $350kgf/cm^2$ in the high-strength concrete. And it is to analyze the behavior of creep coefficient by applying the experimental data though the compressive strength test, the elastic modulus test and the dry shrinkage test to the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design. Also it is to analyze the behavior of short-term creep coefficient during 91 days in the age when loading through the experiment by using the regression analysis, the statistical theory. As applying it to the long-term behavior during 365 days and comparing with the creep prediction mode and examining it, the result from the analysis of the quality of the concrete is as follows. As the result of comparison and analysis about the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design, the normal Portland cement class 1 shows the approximate value with the prediction of GEE/PIP-90 and the basis of concrete structural design, but in case of the prediction of ACI-209 and AASHTO-94, there would be worry of underestimation in the application.

  • PDF

근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계 (Design Optimization of a RC Building Structure using an Approximate Optimization Technique)

  • 박창현;안희재;최동훈;정철규
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.223-233
    • /
    • 2011
  • 본 논문에서는 수직하중, 풍하중 및 지진하중에 의해 발생하는 변위 관련 구속조건을 만족하면서 RC(Reinforced Concrete) 빌딩 구조의 부피를 최소화하기 위한 설계문제를 정식화하였다. 구조해석 절차 자동화의 어려움으로 인해 실험 계획법과 근사화기법, 최적화기법을 이용한 근사모델기반 최적설계를 수행하였다. 특히, 만족할 만한 설계 결과를 얻을 때까지 설계변수의 범위와 구속조건의 허용값을 조정하는 단계적 최적설계 방법을 제안하였다. 제안된 단계적 최적설계 방법을 통해 주어진 구속조건을 모두 만족하면서 RC 빌딩 구조의 부피를 초기 설계 대비 53.3% 감소시키는 결과를 얻음으로 써 본 논문에서 보인 단계적 최적설계 방법의 타당성을 보였다.

Two-dimensional rod theory for approximate analysis of building structures

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.1-19
    • /
    • 2010
  • It has been known that one-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls with opening, structural behavior is significantly governed by the local variation of stiffness. This paper proposes an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The governing equation for the two-dimensional rod theory is formulated from Hamilton's principle by making use of a displacement function which satisfies continuity conditions across the boundary between the distinct structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures.