• Title/Summary/Keyword: approximate matching

Search Result 68, Processing Time 0.025 seconds

New stereo matching algorithm based on probabilistic diffusion (확률적 확산을 이용한 스테레오 정합 알고리듬)

  • 이상화;이충웅
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

Nonlinear Function Approximation by Fuzzy-neural Interpolating Networks

  • Suh, Il-Hong;Kim, Tae-Won-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1177-1180
    • /
    • 1993
  • In this paper, a fuzzy-neural interpolating network is proposed to efficiently approximate a nonlinear function. Specifically, basis functions are first constructed by Fuzzy Membership Function based Neural Networks (FMFNN). And the fuzzy similarity, which is defined as the degree of matching between actual output value and the output of each basis function, is employed to determine initial weighting of the proposed network. Then the weightings are updated in such a way that square of the error is minimized. To show the capability of function approximation of the proposed fuzzy-neural interpolating network, a numerical example is illustrated.

  • PDF

Road Detection in the Spaceborne Synthetic Aperture Radar Images (위성 탑재 합성개구 레이더 영상에서의 도로 검출)

  • Chun, Sung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.123-132
    • /
    • 1998
  • This paper presents a road detection technique for spaceborne synthetic aperture radar (SAR) images. Roads are important cartographic features. We incorporate an active contour model called snake as a model for the road and define a new external energy for snake which is appropriate for the road. Detecting roads in spaceborne SAR images is very difficult without other information. In this paper, digital maps are utilized to obtain the initial position and shape for snake. Only approximate geodetic location of roads appearing in SAR images can be known through geocoding process and usual digital maps also have location errors. Therefore, there exist large location offsets between the two data. By introducing initial matching procedure, the errors are reduced significantly. Then we initialize the snake's shape using the roads extracted from digital map and minimize the energies of all snake points to detect roads. We outline two problems in detection and propose a method that mitigates them.

  • PDF

On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices (압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰)

  • Kim, Jae Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

Robust object tracking using projected motion and histogram intersection (투영된 모션과 히스토그램 인터섹션을 이용한 강건한 물체추적)

  • Lee, Bong-Seok;Moon, Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.99-104
    • /
    • 2002
  • Existing methods of object tracking use template matching, re-detection of object boundaries or motion information. The template matching method requires very long computation time. The re-detection of object boundaries may produce false edges. The method using motion information shows poor tracking performance in moving camera. In this paper, a robust object tracking algorithm is proposed, using projected motion and histogram intersection. The initial object image is constructed by selecting the regions of interest after image segmentation. From the selected object, the approximate displacement of the object is computed by using 1-dimensional intensity projection in horizontal and vortical direction. Based on the estimated displacement, various template masks are constructed for possible orientations and scales of the object. The best template is selected by using the modified histogram intersection method. The robustness of the proposed tracking algorithm has been verified by experimental results.

3D image mosaicking technique using multiple planes for urban visualization (복수 투영면을 사용한 도심지 가시화용 3 차원 모자이크 기술)

  • CHON Jaechoon;KIM Hyongsuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.41-50
    • /
    • 2005
  • A novel image mosaicking technique suitable for 3D urban visualization is proposed. It is not effective to apply 2D image mosaicking techniques for urban visualization when, for example, one is filming a sequence of images from a side-looking video camera along a road in an urban area. The proposed method presents the roadside scene captured by a side-looking video camera as a continuous set of textured planar faces, which are termed 'multiple planes' in this paper. The exterior parameters of each frame are first calculated through automatically selected matching feature points. The matching feature points are also used to estimate a plane approximation of the scene geometry for each frame. These planes are concatenated to create an approximate model on which images are back-projected as textures. Here, we demonstrate algorithm that creates efficient image mosaics in 3D space from a sequence of real images.

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

Realtime Vehicle Tracking and Region Detection in Indoor Parking Lot for Intelligent Parking Control (지능형 주차 관제를 위한 실내주차장에서 실시간 차량 추적 및 영역 검출)

  • Yeon, Seungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.418-427
    • /
    • 2016
  • A smart parking management requires to track a vehicle in a indoor parking lot and to detect the place where the vehicle is parked. An advanced parking system watches all space of the parking lot with CCTV cameras. We can use these cameras for vehicles tracking and detection. In order to cover a wide area with a camera, a fisheye lens is used. In this case the shape and size of an moving vehicle vary much with distance and angle to the camera. This makes vehicle detection and tracking difficult. In addition to the fisheye lens, the vehicle headlights also makes vehicle detection and tracking difficult. This paper describes a method of realtime vehicle detection and tracking robust to the harsh situation described above. In each image frame, we update the region of a vehicle and estimate the vehicle movement. First we approximate the shape of a car with a quadrangle and estimate the four sides of the car using multiple histograms of oriented gradient. Second we create a template by applying a distance transform to the car region and estimate the motion of the car with a template matching method.

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

Fast, Flexible Text Search Using Genomic Short-Read Mapping Model

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.518-528
    • /
    • 2016
  • The searching of an extensive document database for documents that are locally similar to a given query document, and the subsequent detection of similar regions between such documents, is considered as an essential task in the fields of information retrieval and data management. In this paper, we present a framework for such a task. The proposed framework employs the method of short-read mapping, which is used in bioinformatics to reveal similarities between genomic sequences. In this paper, documents are considered biological objects; consequently, edit operations between locally similar documents are viewed as an evolutionary process. Accordingly, we are able to apply the method of evolution tracing in the detection of similar regions between documents. In addition, we propose heuristic methods to address issues associated with the different stages of the proposed framework, for example, a frequency-based fragment ordering method and a locality-aware interval aggregation method. Extensive experiments covering various scenarios related to the search of an extensive document database for documents that are locally similar to a given query document are considered, and the results indicate that the proposed framework outperforms existing methods.