• Title/Summary/Keyword: approximate approaches

Search Result 102, Processing Time 0.027 seconds

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

An Interactive Perspective Scene Completion Framework Guided by Complanate Mesh

  • Hao, Chuanyan;Jin, Zilong;Yang, Zhixin;Chen, Yadang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.183-200
    • /
    • 2020
  • This paper presents an efficient interactive framework for perspective scene completion and editing tasks, which are available largely in the real world but rarely studied in the field of image completion. Considering that it is quite hard to extract perspective information from a single image, this work starts from a friendly and portable interactive platform to obtain the basic perspective data. Then, in order to make this interface less sensitive, easier and more flexible, a perspective-rectification based correction mechanism is proposed to iteratively update the locations of the initial points selected by users. At last, a complanate mesh is generated by the geometry calculations from these corrected initial positions. This mesh must approximate the perspective direction and the structure topology as much as possible so that the filling process can be conducted under the constraint of the perspective effects of the original image. Our experiments show the results with good qualities and performances, and also demonstrate the validity of our approaches by various perspective scenes and images.

Development and Verification of Inundation Model Considering Storm Sewers in Urban Area (도시배수체계와 연계한 침수모형의 개발 및 검증)

  • Han, Kun-Yeun;Lee, Chang-Hee;Kim, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.159-162
    • /
    • 2005
  • Urban flooding is usually caused by the surcharge of storm sewers. For that reason, domestic studies about urban flooding are concentrated on the simulation of urban drainage system. However these approaches that find the pipes which have insufficient drainage capacity are very approximate and unreasonable ways. In this study, an accurate mathematical modeling is developed to analyze the impacts of an urban inundation for both flood prevention and flood-loss reduction planning and it is verified by using the simulation of July 2001 flooding in Seoul. The result of this study can be used to construct fundamental data for a flood control plan and establish a urban flood forecasting/warning system.

  • PDF

Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision (스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션)

  • Park, Ji-Hwan;Jo, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.641-646
    • /
    • 2010
  • This paper presents algorithms for real-time navigation of a humanoid robot with a stereo vision but no other sensors. Using the algorithms, a robot can recognize its 3D environment by retrieving SIFT features from images, estimate its position through the Kalman filter, and plan its path to reach a destination avoiding obstacles. Our approach focuses on estimating the robot’s central walking path trajectory rather than its actual walking motion by using an approximate model. This strategy makes it possible to apply mobile robot localization approaches to humanoid robot localization. Simple collision free path planning and motion control enable the autonomous robot navigation. Experimental results demonstrate the feasibility of our approach.

Preliminary Design Conditions for a Thermally Actuated Refrigerator Based on the Vuilleumier Cycle (Vuilleumier 사이클로 작동되는 열구동 냉동기의 예비설계조건)

  • 유호선;강병하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2358-2367
    • /
    • 1992
  • This paper deals with preliminary design conditions for a thermally actuated Vuilleumier refrigerator/heat pump. The previously reported approximate adiabatic analysis which is based on the 8-volume model makes it possible to evaluate exchanged heats per cycle as well as cyclic pressure, temperature and mass variation of each working volume. Calculated results reveal not only there exists an optimum value for the phase angle and the swept volume ratio maximizing a specific thermal output, but also design parameters can be determined independently of each other. Under a given combination of operating temperature levels, the optimum conditions for refrigeration are different from those for heat pumping and the differences between two operating modes become larger with decreasing the dead volume ratio. Both the optimum phase angle and the optimum swept volume ratio are increased asymptotically toward 0.5 pi and 1.0 respectively, as the dead volume ratio approaches to unity. When a VM machine is used for cooling and heating simultaneously, the design parameters should be carefully determined to reach the best performance.

Control of Surface Energy using Bilayer Metallic Film Heterostructures

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.350-355
    • /
    • 2019
  • Surface energy is an important factor in determining the performance of application components in terms of preventing adhesion failure between thin films. In this regard, numerous attempts have been made to acquire the desired surface energy through chemical treatment or by using micro/nanostructures. However, such approaches are expected to provide extreme values of surface energy, which may not be suitable in achieving the enhanced performance of applications. In this study, we propose a method to control surface energy by using bilayer metallic film heterostructures. We measure the water contact angle of incompatible (Ni/Ag) and compatible (Zn/Ag) metal pairs under several experimental factors, including thickness, time, and temperature. Furthermore, we conduct Auger electron spectroscopy measurements to investigate the atomic concentration with respect to depth after the change in the water contact angle. The experimental results reveal that three parameters, namely, compatibility, film thickness, and environmental temperature, are major factors in controlling the water contact angle. Thus, we experimentally demonstrate that controlling these three parameters can provide the approximate desired water contact angle. This result is expected to aid in the performance enhancement of a wide range of application components, where control of surface energy is required.

An Improvement of Particle Swarm Optimization with A Neighborhood Search Algorithm

  • Yano, Fumihiko;Shohdohji, Tsutomu;Toyoda, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • J. Kennedy and R. Eberhart first introduced the concept called as Particle Swarm Optimization (PSO). They applied it to optimize continuous nonlinear functions and demonstrated the effectiveness of the algorithm. Since then a considerable number of researchers have attempted to apply this concept to a variety of optimization problems and obtained reasonable results. In PSO, individuals communicate and exchange simple information with each other. The information among individuals is communicated in the swarm and the information between individuals and their swarm is also shared. Finally, the swarm approaches the optimal behavior. It is reported that reasonable approximate solutions of various types of test functions are obtained by employing PSO. However, if more precise solutions are required, additional algorithms and/or hybrid algorithms would be necessary. For example, the heading vector of the swarm can be slightly adjusted under some conditions. In this paper, we propose a hybrid algorithm to obtain more precise solutions. In the algorithm, when a better solution in the swarm is found, the neighborhood of a certain distance from the solution is searched. Then, the algorithm returns to the original PSO search. By this hybrid method, we can obtain considerably better solutions in less iterations than by the standard PSO method.

Optimization of particle packing by analytical and computer simulation approaches

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.119-131
    • /
    • 2012
  • Optimum packing of aggregate is an important aspect of mixture design, since porosity may be reduced and strength improved. It may also cause a reduction in paste content and is thus of economic relevance too. Several mathematic packing models have been developed in the literature for optimization of mixture design. However in this study, numerical simulation will be used as the main tool for this purpose. A basic, simple theoretical model is used for approximate assessment of mixture optimization. Calculation and simulation will start from a bimodal mixture that is based on the mono-sized packing experiences. Tri-modal and multi-sized particle packing will then be discussed to find the optimum mixture. This study will demonstrate that computer simulation is a good alternative for mixture design and optimization when appropriate particle shapes are selected. Although primarily focusing on aggregate, optimization of blends of Portland cement and mineral admixtures could basically be approached in a similar way.

Set Covering-based Feature Selection of Large-scale Omics Data (Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법)

  • Ma, Zhengyu;Yan, Kedong;Kim, Kwangsoo;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF