• Title/Summary/Keyword: appropriate distribution

Search Result 1,904, Processing Time 0.024 seconds

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.