• Title/Summary/Keyword: apoptotic induction

Search Result 614, Processing Time 0.023 seconds

Effects of Samultang on Glutamate-Induced Apoptosis of Hippocampus Cells (사물탕(四物湯)이 Glutamate에 의한 해마세포의 손상에 미치는 영향)

  • Jeong, Dae-Young;Choi, Chul-Won;Moon, Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.64-75
    • /
    • 2009
  • Objective: This study was designed to investigate the effect of Samultang (SMT) under hippocampus cells ischemia both in vitro and in vivo. Methods: In the in vitro study, HT22 cells, predominantly detected in the cytoplasm, which coincides with the location of the mitochondria, were used as indicators. In the in vivo study, permanent middle cerebral artery occlusion (MCAO) was induced on rats. SMT was given orally 2 h before induction of permanent focal brain ischemic injury. Result: In the in vitro study, SMT had protective effects in glutamate-induced cytotoxicity, which was revealed as apoptosis characterized by chromatic condensation and the loss of mitochondrial membrane potential in HT22 cells. In the in vivo study, TTC (2,3,5-triphenyltetrazolium chloride) staining showed a marked ischemic injury in blood supply territory of the middle cerebral artery (MCA) such as the cerebral cortex and striatum. However, treatment with SMT significantly reduced infarcted volume. SMT increased marked survival of HT22 cells against glutamate-induced cytotoxicity in MTT assay. Conclusion: These results suggest that water extract of SMT provides neuroprotection against ischemic or oxidative injury by inhibition of apoptotic cell death.

  • PDF

Inhibition of Invasion and Induction of Apoptosis by Curcumin in H-ras-Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Kang, Hye-Jung;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2001
  • Curcumin, a dietary pigment in turmeric, posseses anti-carcinogenic and anti-metastatic properties. The present study was conducted to study in vitro chemopreventive effects of curcumin in transformed breast cells. Here, we show that curcumin inhibits H-ras-induced invasive phenotype in MCF10A human breast epithelial cells (H-ras MCF10A) and downregulates matrix metalloproteinase (MMP)-2 dose-dependently. Curcumin exerted cytotoxic effect on H-ras MCF10A cells in a concentration-dependent manner. Curcumin-induced cell death was mainly due to apoptosis in which a prominent downregulation of Bcl-2 and upregulation of Bax were involved. We also suggest a possible involvement of caspase-3 in curcumin-induced apoptosis. Curcumin treatment resulted in the production of reactive oxygen species (ROS) in H-ras MCF10A cells. Apoptotic event by curcumin was significantly inhibited by pretreatment of an antioxidant N-acetyl-$_L$-cysteine (NAC), suggesting redox signaling as a mechanism responsible for curcumin-induced apoptosis in H-ras MCF10A cells. Taken together, our results demonstrate that curcumin inhibits invasion and induces apoptosis, proving the chemopreventive potential of curcumin .

  • PDF

Up-Regulation of $p27^{Kip1}$ Protects hES Cells from Differentiation-Associated and Caspase 3-Dependent Apoptosis

  • Park, So-Hyun;Kim, Min Kyoung;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1790-1794
    • /
    • 2012
  • Recently, it has been suggested that $p27^{Kip1}$, the cell cycle regulatory protein, plays a pivotal role in the progression of normal differentiation in murine embryonic stem (mES) cells. In the current study, we investigated the role of $p27^{Kip1}$ in the regulation of differentiation and apoptotic induction using Western blotting, quantitative real-time RT-PCR, and small interfering RNA (siRNA) assays and confocal laser scanning microscopic analysis of H9 human ES (hES) cells and H9-derived embryoid bodies (EBs) grown for 10 ($EB_{10}$) and 20 days ($EB_{20}$). Our results demonstrate that the proteins $p27^{Kip1}$ and cyclin D3 are strongly associated with cellular differentiation, and, for the first time, show that up-regulation of $p27^{Kip1}$ protects hES cells from inducing differentiation-associated and caspase 3-dependent apoptosis.

Comparison between Doxorubicin and Anti-Fas Antibody induced poptosis in Promyelocytic Leukemia Cell Line HL-60 (전골수성 백혈병 세포주 HL-60에 대한 Doxorubicin 유발성 Apoptosis와 Anti-Fas 항체 유발성 Apoptosis의 비교)

  • 윤경식;설지연;오현정;이광수;이원규;정성철
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 1999
  • Induction of apoptosis is considered to be the underlying mechanism that accounts for the efficiency of chemotherapeutic drugs. It has recently been proposed that doxorubicin (DOX) can induce apoptosis in human leukemic cells via the Fas/Fas Ligand (FasL) system. Comparison of Fas and FasL mRNA expression between drug- and anti-Fas antibody(Fas-Ab)- induced apoptosis was analyzed for examining the role of Fas/FasL system in the mediation of drug-induced apoptosis. After HL-60 cells were routinely cultured, MTT assay was performed for cytotoxicity test. Giemsa staining was carried out to monitor the apoptosis morphologically. By semiquantitative RT-PCR analysis, the expression of Fas and FasL at 4, 10, 24 hours was determined after DOX and Fas-Ab treatment. Dose-dependent cytotoxicity was induced by DOX-treatment, while Fas-Ab treatment showed the similar dose-dependent pattern but the cytotoxicity is not reached at LD$_{50}$ at 100 ng/ml concentration of Fas-Ab. In the 10ng/m1 DOX and 10ng/m1 Fas-Ab treated group, typical apoptotic cell morphology was shown such as fragmented nuclei and cell membrane budding in the Giemsa-stained slide. Fas mRNA expression was not changed significantly in the both groups. But, FasL mRNA expression was induced significantly at initial period of apoptosis. In this study, Fas/FasL interaction assumed to be involved in drug-induced apoptosis.s.

  • PDF

Effects of dietary lipid sources on apoptotic and immune gene expression in head kidney of olive flounder (Paralichthys olivaceus)

  • Hur, Deokhwe;Lee, Sang-Min;Hong, Suhee
    • Journal of fish pathology
    • /
    • v.25 no.3
    • /
    • pp.199-210
    • /
    • 2012
  • It can be hypothesized that dietary fatty acids can modulate immune responses in fish by inducing apoptosis of immune cells since dietary polyunsaturated fatty acid (PUFA) increase apoptosis by oxygen radicals generated by peroxidation. Thus we examined the effects of deferent dietary lipid sources such as squid liver oil (FO), linseed oil (LO) and soybean oil (SO) on oxidation (Cytochrome C oxidase; COS), apoptosis (TNF-${\alpha}$ Scinderin like) and immune (IL-$1{\beta}$ and NKEF) gene expression in the main immune organ (head kidney) in olive flounder (Paralichthys olivaceus) by Q-PCR analysis after feeding diets containing each oil (5%) for 15 weeks. Linseed oil and soybean oil were chosen to compare n-3 or n-6 enriched vegetable oils, respectively. Consequently, COS, TNF-${\alpha}$ and Scinderin like gene expression was increased in SO group, indicating the induction of oxidation and apoptosis. Meanwhile, no significant difference was found in immune gene expression. In conclusion vegetable oils containing n-3 PUFA like linseed oil seems to be more suitable lipid source than soybean oil for replacement of fish oil in flounder since n-6 PUFA in SO leads to activation of apoptosis pathways within the cellular damage in head kidney.

Effects of rosmarinic acid on immunoregulatory activity and hepatocellular carcinoma cell apoptosis in H22 tumor-bearing mice

  • Cao, Wen;Mo, Kai;Wei, Sijun;Lan, Xiaobu;Zhang, Wenjuan;Jiang, Weizhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.501-508
    • /
    • 2019
  • Rosmarinic acid (RA) is a natural polyphenolic compound that exists in many medicinal species of Boraginaceae and Lamiaceae. The previous studies have revealed that RA had therapeutic effects on hepatocellular carcinoma (HCC) in the H22-xenograft models by inhibiting the inflammatory cytokines and $NF-{\kappa}B$ p65 pathway in the tumor microenvironment. However, its molecular mechanisms of immunoregulation and pro-apoptotic effect in HCC have not been fully explored. In the present study, RA at 75, 150, and 300 mg/kg was given to H22 tumor-bearing mice via gavage once a day for 10 days. The results showed that RA can effectively inhibit the tumor growth through regulating the ratio of $CD4^+/CD8^+$ and the secretion of interleukin (IL)-2 and interferon-${\gamma}$, inhibiting the expressions of IL-6, IL-10 and signal transducer and activator of transcription 3, thereby up-regulating Bax and Caspase-3 and down-regulating Bcl-2. The underlying mechanisms involved regulation of immune response and induction of HCC cell apoptosis. These results may provide a more comprehensive perspective to clarify the anti-tumor mechanism of RA in HCC.

Anti-cancer Effect of Apigenin on Human Breast Carcinoma MDA-MB-231 through Cell Cycle Arrest and Apoptosis

  • Lee, Hwan Hee;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Apigenin, a common natural product that is found in many plants and vegetables, has been reported to have many biological activities, including antioxidative, anti-inflammatory, and anticancer effects. The triple-negative breast carcinoma cell line MDA-MB-231 is known to be highly invasive and resistant to chemotherapy. In this study, we investigated the anticancer effect of apigenin on human MDA-MB-231 cells. First, the cytotoxicity of apigenin toward MDA-MB-231 cells was analyzed by MTT assay. Then, the cell cycle and apoptotic effects of apigenin were examined, and the molecular mechanism underlying its anticancer activity was explored. Apigenin inhibited the growth of the cells in a dose-dependent manner, correlating with the cell cycle arrest at the G2-M phase as well as an increase of early apoptosis. The cell-cycle inhibitory effect was highly associated with the increased expression of p21 and decreased expression of CDK6, cyclin D1, and cyclin B1. The induction of apoptosis by apigenin was associated with the upregulated expression of cleaved PARP and cleaved caspase-3, -7, and -9.

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin;Kim, Suntae;Choi, Yong June;Kim, U Ji;Kang, Keon Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.435-446
    • /
    • 2022
  • The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

Tivozanib-induced activation of the mitochondrial apoptotic pathway and suppression of epithelial-to-mesenchymal transition in oral squamous cell carcinoma

  • Nak-Eun Choi;Si-Chan Park;In-Ryoung Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.197-207
    • /
    • 2024
  • The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.

Apoptotic Effect of Co-Treatment with Valproic Acid and 17AAG on Human Osteosarcoma Cells (Valproic acid와 17AAG의 병용처리가 사람골육종세포에 미치는 세포자멸사 효과에 대한 연구)

  • Park, Jun-Young;Park, Se-Jin;Kim, In-Ryoung;Park, Bong-Soo;Jeong, Sung-Hee;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Valproic acid (VPA) is a well-known anticonvulsive agent and has been used in the treatment of epilepsy for almost 30 years. VPA emerged in 1997 as an antineoplastic agent. And it is known that antitmor activity of VPA is associated with its targeted at histone deacetylases. 17AAG, Inhibition of HSP90 leads to the proteasome degradation of the HSP90 client proteins, such as Akt, Raf/Ras, Erk, VEGF, cyclin D and p53, and causes potent antitumor activity. It is reported that 17AAG-induced HSP90 inhibition results in prevention of cell proliferation and induction of apoptosis in several types of cancer. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with the histone deacetylases inhibitor, VPA and the HSP90 inhibitor, 17AAG on human osteosarcoma (HOS) cells. Cell viability was evaluated by trypan-blue exclusion. Induction and augmentation of apoptosis were confirmed by Hoechst staining, flow cytometry (DNA hypoploidy and MMP change), Westen blot analysis and immunofluorescent staining. In this study, HOS cells co-treated with VPA and 17AAG showed several lines of apoptotic manifestation such as nuclear condensations, the reduction of MMP, the decrease of DNA content, the release of cytochrome c into cytosol, the translocation of AIF onto nuclei, and activation of caspase-3, caspase-7 and PARP whereas each single treated HOS cells did not. Although the single treatment of 1 mM VPA or 0.5 ${\mu}M$ 17AAG for 48 h did not induce apoptosis, the co-treatment with them induced prominently apoptosis. Therefore our data in this study provide the possibility that combination therapy with VPA and 17AAG could be considered as a novel therapeutic strategy for human osteosarcoma.