• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.03 seconds

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway (병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절)

  • Ji, Juree;Nam, Young sun;Kang, Sang Mo
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2021
  • This study determined the effects of Centella asiatica leaf on H2O2 induced cell cycle arrest, mitochondrial activity, and proinflammatory cytokine production in human dermal fibroblast (HDF) cells. We used an 80% methanol extract of C. asiatica, its ethyl acetate fraction, and asiaticoside, the major constituent of C. asiatica. The C. asiatica extract, its ethyl acetate fraction, and asiaticoside attenuated G1 cell cycle-arrest and the apoptotic effect caused by H2O2-induced oxidative stress. The cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside secreted lower levels of TNF-α and IL-6. The antioxidant effect of asiaticoside was higher than that of C. asiatica extract and its ethyl acetate fraction. Treatment with C. asiatica extract, its ethyl acetate fraction, and asiaticoside also increased the mitochondrial membrane potential and restored normal mitochondrial morphology. Following H2O2 stress induction, cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside showed increased mitochondrial oxygen consumption rates and decreases in the TLR4-MyD88-TRAF6-p65 pathway activity. These findings suggest that C. asiatica extract, its ethyl acetate fraction, and asiaticoside have antioxidant and anti-inflammatory effects, as well as the ability to control the mitochondrial activities of HDF cells.

Exosome-mediated delivery of gga-miR-20a-5p regulates immune response of chicken macrophages by targeting IFNGR2, MAPK1, MAP3K5, and MAP3K14

  • Yeojin Hong;Jubi Heo;Suyeon Kang;Thi Hao Vu;Hyun S. Lillehoj;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.851-860
    • /
    • 2023
  • Objective: This study aims to evaluate the target genes of gga-miR-20a-5p and the regulated immune responses in the chicken macrophage cell line, HD11, by the exosome-mediated delivery of miR-20a-5p. Methods: Exosomes were purified from the chicken macrophage cell line HD11. Then, mimic gga-miR-20p or negative control miRNA were internalized into HD11 exosomes. HD11 cells were transfected with gga-miR-20a-5p or negative control miRNA containing exosomes. After 44 h of transfection, cells were incubated with or without 5 ㎍/mL poly(I:C) for 4 h. Then, expression of target genes and cytokines was evaluated by quantitative realtime polymerase chain reaction. Results: Using a luciferase reporter assay, we identified that gga-miR-20a-5p directly targeted interferon gamma receptor 2 (IFNGR2), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), and mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Moreover, the exosome-mediated delivery of gga-miR-20a-5p successfully repressed the expression of IFNGR2, MAPK1, MAP3K5, and MAP3K14 in HD11 cells. The expressions of interferon-stimulated genes (MX dynamin like GTPase 1 [MX1], eukaryotic translation initiation factor 2A [EIF2A], and oligoadenylate synthase-like [OASL]) and proinflammatory cytokines (interferon-gamma [IFNG], interleukin-1 beta [IL1B], and tumor necrosis factor-alpha [TNFA]) were also downregulated by exosomal miR-20a-5p. In addition, the proliferation of HD11 cells was increased by exosomal miR-20a-5p. Conclusion: The exosome-mediated delivery of gga-miR-20a-5p regulated immune responses by controlling the MAPK and apoptotic signaling pathways. Furthermore, we expected that exosomal miR-20a-5p could maintain immune homeostasis against highly pathogenic avian influenza virus H5N1 infection by regulating the expression of proinflammatory cytokines and cell death.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

Characterization of Nitric Oxide (NO)-Induced Cell Death in Lung Epithelial Cells (폐상피세포에서 Nitric Oxide (NO)에 의한 세포사에 관한 연구)

  • Yong, Wha Shim;Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.187-197
    • /
    • 2004
  • Background : Nitric Oxide (NO) is a multi-faceted molecule with dichotomous regulatory roles in many areas of biology. NO can promote apoptosis in some cells, whereas it inhibits apoptosis in other cell types. This study was performed to characterize NO-induced cell death in lung epithelial cells and to investigate the roles of cell death regulators including iron, bcl-2 and p53. Methods : A549 cells were used for lung epithelial cells. SNP (sodium nitroprusside) and SNAP (S-nitroso-N-acetyl- penicillamine) were used for NO donor. Cytoxicity assay was done by MTT assay and crystal violet assay. Apoptotic assay was done by fluorescent microscopy after double staining with propidium iodide and hoecst 33342. Iron inhibition study was done with RBCs and FeSO4. For bcl-2 study, bcl-2 overexpressing cells (A549-bcl-2) were used and for p53 study, Western blot analysis and p53 functionally knock-out cells (A549-E6) were used. Results : SNP and SNAP induced dose-dependent cell death in A549 cells and fluorescent microscopy revealed that SNAP induced apoptosis in low doses but necrosis in high doses while SNP induced exclusively necrotic cell death. Iron inhibition study using RBCs and FeSO4 significantly blocked SNAP-induced cell death. And also SNAP-induced cell death was blocked by bcl-2 overexpression. Finally, we found that SNAP activate p53 by Western blot analysis and that SNAP-induced cell death was decreased in the abscence of p53. Conclusion : In lung epithelial cells, NO can induce cell death, more precisely apoptosis in low doses and necrosis in high doses. And iron, bcl-2, and p53 play important roles in NO-induced cell death.

Effects of Cortisol on the Steroidogenesis and the Apoptosis of Human Granulosa-Lutein Cells (Cortisol이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향)

  • Kim, Jin-Hee;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.329-339
    • /
    • 2009
  • Cortisol is present in high concentration in the ovary and its receptor is expressed in the ovarian cells. Moreover, cortisol is known to have a role in steroid synthesis and cell metabolism in human granulosa and lutein cells. However, little is known of the role of cortisol presenting in high concentration in the follicles after LH surge on the granulosa-lutein cells. Therefore, the this study we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ in the granulosa-lutein cells that are obtained during oocyte-retrieval after treatment with 5, 50, and $500{\mu}g/m\ell$ cortisol and 1 IU/$m\ell$ FSH. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in 50 and $500{\mu}g/m\ell$ cortisol treated cells. We found, however, that FSH did not suppress the apoptosis of the cells induced by cortisol. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by cortisol treatment, whereas $E_2$ was not changed. We also demonstrated that FSH did not inhibit the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present study suggests that cortisol of high concentration could cause the apoptosis of human granulosa-lutein cells by suppressing the production of $P_4$. However, we need more studies to elucidate the mechanism by which cortisol induces apoptosis in human granulosa-lutein cells in view of the fact that our results are inconsistent with previous reported data.

  • PDF

Anti-inflammatory Effects of Aroma Oil Complex on DNCB-Induced Allergic Contact Dermatitis in Dogs (개에서 DNCB에 의해 유발된 알레르기성 접촉피부염에 대한 아로마 오일 합제의 항염증 효과)

  • Oh, Dong-Kyu;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.180-193
    • /
    • 2014
  • Allergic contact dermatitis (ACD) is an inflammatory skin disease and regarded as a prototype of T-cell mediated delayed-type hypersensitivity reactions. Aroma Oil Complex (AOC) is composed of lavender true oil, chamomile roman oil and tea tree oil. This study was performed to assess the effects of AOC in a canine model of ACD. ACD was induced on the back of dogs induced by sensitization and repeated application by 2,4-dinitro-1-chlorobenzene (DNCB). Topical treatment of AOC was applied once a day for 8 days and skin biophysical parameters including transepidermal water loss (TEWL), skin hydration, skin thickness and erythema index, were measured every two days during experimental periods. Histopathology and immunohistochemistry were performed to evaluate the anti-inflammatory effect. In skin biophysical parameters, TEWL, skin hydration, skin thickness and erythema index were significantly increased, with a maximum increase appeared on day 2 (p<0.05). After the completion of AOC treatment, skin biophysical parameters were significantly reached those of baseline in a time-dependent manner (p<0.05). In histopathology, marked increases of epidermal thicknesses were induced after DNCB challenge with numerous inflammatory cell infiltrations and edematous changes, decreases of connective tissue occupied regions in dermis. In addition, marked increases of cytokine - tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$)-immunoreactivities in the dermis and of apoptotic markers - caspase-3 and PARP-immunoreactivities in the epidermis were observed in DNCB control as compared with intact control, respectively (p<0.01). The decrease of infiltrated inflammatory cells and related decreases of pro-inflammatory cytokine immunoreactivities were observed in AOC treated skin (p<0.01). Based on these findings, AOC may have anti-inflammatory and alleviatory effects in the allergic contact dermatitis.

Anticancer Effects of Typhae Pollen on HepG2 Human Hepatocellular Carcinoma

  • Joo, Jeong-Hyun;Kim, Kyung-Soon;Choi, Hong-Sik;Kim, Seung-Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.261-270
    • /
    • 2018
  • The aim of this study was to evaluate the antitumor activities of Typhae pollen (TP) by confirming in vitro cytotoxicity and in vivo anti-tumor and immune-modulatory effect with anti-cachexia effect. The MTT assay is used in HepG2 cell to detect potential cytotoxic activities of aqueous extract of Typhae pollen (TPe). After HepG2 tumor cell implantation, eight mice per groups were assigned to six groups. Three different dosages of TPe (500, 250 and 125 mg/kg) were orally administered in the amount of $10m{\ell}/kg$ and sorafenib also administered 20mg/kg, every day for 35 days from 28 days after the tumor cell implantation. We observed the changes on body weights, tumor volume and weights, lymphatic organ, serum interferon $(IFN)-{\gamma}$ levels, splenocytes and peritoneal NK cell activity, splenic tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-10 contents. Periovarian fat weights, serum IL-6 levels, thicknesses of deposited periovarian adipose tissue and mean diameters were also detected to monitor the tumor-related anticachexic effects. In tumor masses, the immunoreactivities of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (cleaved PARP) - apoptotic marks, cyclooxygenase-2 (COX-2), inducible nitric oxide synthases (iNOS) and tumor necrosis factor $(TNF)-{\alpha}$ were additionally observed by immunohistochemistry. The results were compared with sorafenib. Decreases of COX-2 were demonstrated in sorafenib and TPe treated mice and also increases of iNOS in tumor masses were observed in TPe, not in sorafenib. TPe increased periovarian fat pad weights compared with tumor-bearing controls and sorafenib treated mice. TPe showed increases of splenic $TNF-{\alpha}$, IL-10 and $IL-1{\beta}$, serum $IFN-{\gamma}$ and NK cell activities corresponding to increases of spleen weights, lymph node weights and non-atrophic changes of lymph nodes. Our results show oral treatment of TPe 500, 250 and 125 mg/kg has potent in vitro and in vivo antitumor activities through modest cytotoxic effects, immunomodulatory effects and apoptotic activities in HepG2 tumor cells. In addition, TPe can prevent cancer related cachexia.

Regulation of Apoptosis and Cell Cycle in Irradiated Mouse Brain (마우스의 대뇌조직에서 방사선에 의한 아포토시스와 세포주기의 조절)

  • Oh, Won-Yong;Song, Mi-Hee;Chung, Eun-Ji;Seong, Jin-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Purpose : To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. Materials and Methods : 8-week old male mice, C57B1/6J were given whole body $\gamma-radiation$ with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins Bl, Dl, E and cdk2, cdk4, $p34^{cdc2}$ were analysed by Western blotting. Cell cycle was analysed by Flow cytometry. Results : The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is $24.0{\pm}0.25$ (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-Gl, G2-M and S phase in the cell cycle does not specific changes by time. Conclusion : In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle ofter better understanding of radiation response of noraml brain tissue.

  • PDF