• Title/Summary/Keyword: apoptotic cells

Search Result 2,160, Processing Time 0.03 seconds

Induction of Apoptotic Cell Death by Aqueous Extract of Cordyceps militaris Through Activation of Caspase-3 in Human Hepatocarcinoma Hep3B Cells (Hep3B 간암세포에서 Caspase-3 활성화를 통한 동충하초 열수추출물의 Apoptosis 유도에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Seo, Sang-Ho;Hong, Sang-Hoon;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.714-720
    • /
    • 2008
  • Cordyceps militaris is a medicinal fungus which has been used for patient suffering from cancer in Oriental medicine. It was previously reported that C. militaris extracts are capable of inhibiting tumor growth and inducing apoptosis; however, the anti-poliferative effects of human cancer cells have been poorly understood. In this study, to elucidate the anti-cancer mechanisms of human cancer cells by treatment with aqueous extract of C. militaris (AECM), we investigated the anti-proliferative effects of AECM in human hepatocarcinoma Hep3B cells. AECM treatment inhibited the growth of Hep3B cells and induced the apoptotic cell death in a concentration-dependent manner such as formation of apoptotic bodies and increased populations of apoptotic-sub G1 phase. The induction of apoptosis by AECM was connected with a proteolytic activation of caspase-3 and caspase-8. and concomitant degradation of poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin proteins. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited AECM-induced apoptosis demonstrating the important role of caspase-3 in the bserved cytotoxic effect. Taken together, these findings suggest that AECM-induced inhibition of human hepatocarcinoma cell proliferation is associated with the induction of apoptotic cell death via activation of caspase-3 and C. militaris may have therapeutic potential in human cancer.

Kaempferol Activates G2-Checkpoint of the Cell Cycle Resulting in G2-Arrest and Mitochondria-Dependent Apoptosis in Human Acute Leukemia Jurkat T Cells

  • Kim, Ki Yun;Jang, Won Young;Lee, Ji Young;Jun, Do Youn;Ko, Jee Youn;Yun, Young Ho;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.287-294
    • /
    • 2016
  • The effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2-arrest of the cell cycle. Under these conditions, apoptotic events, including upregulation of Bak and PUMA levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -8, and -3, anti-poly (ADP-ribose) polymerase (PARP) cleavage, and accumulation of apoptotic sub-G1 cells, were induced without accompanying necrosis. However, these apoptotic events, except for upregulation of Bak and PUMA levels, were completely abrogated in J/Bcl-xL cells overexpressing Bcl-xL, suggesting that the G2-arrest and the Bcl-xL-sensitive mitochondrial apoptotic events were induced, in parallel, as downstream events of the DNA-damage-mediated G2-checkpoint activation. Together these results demonstrate that kaempferol-mediated antitumor activity toward Jurkat T cells was attributable to G2-checkpoint activation, which caused not only G2-arrest of the cell cycle but also activating phosphorylation of p53 (Ser-15) and subsequent induction of mitochondria-dependent apoptotic events, including Bak and PUMA upregulation, Bak activation, Δψm loss, and caspase cascade activation.

Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells

  • Sung, Nak Yoon;Kim, Seung Cheol;Kim, Yun Hwan;Kim, Gihyeon;Lee, Yunmi;Sung, Gi-Ho;Kim, Ji Hye;Yang, Woo Seok;Kim, Mi Seon;Baek, Kwang-Soo;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.402-409
    • /
    • 2016
  • It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells.

Pharmacologic Inhibition of Autophagy Sensitizes Human Acute Leukemia Jurkat T Cells to Acacetin-Induced Apoptosis

  • Lee, Ji Young;Jun, Do Youn;Kim, Ki Yun;Ha, Eun Ji;Woo, Mi Hee;Ko, Jee Youn;Yun, Young Ho;Oh, In-Seok;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.197-205
    • /
    • 2017
  • Exposure of Jurkat T cell clone (J/Neo cells) to acacetin (5,7-dihydroxy-4'-methoxyflavone), which is present in barnyard millet (Echinochloa esculenta (A. Braun)) grains, caused cytotoxicity, enhancement of apoptotic $sub-G_1$ rate, Bak activation, loss of mitochondrial membrane potential (${\Delta}{\Psi}m$), activation of caspase-9 and caspase-3, degradation of poly(ADP-ribose) polymerase, and FITC-Annexin V-stainable phosphatidylserine exposure on the external surface of the cytoplasmic membrane without accompanying necrosis. These apoptotic responses were abrogated in Jurkat T cell clone (J/Bcl-xL) overexpressing Bcl-xL. Under the same conditions, cellular autophagic responses, including suppression of the Akt-mTOR pathway and p62/SQSTM1 down-regulation, were commonly detected in J/Neo and J/Bcl-xL cells; however, formation of acridine orange-stainable acidic vascular organelles, LC3-I/II conversion, and Beclin-1 phosphorylation (Ser-15) were detected only in J/Neo cells. Correspondingly, concomitant treatment with the autophagy inhibitor (3-methyladenine or LY294002) appeared to enhance acacetin-induced apoptotic responses, such as Bak activation, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and apoptotic $sub-G_1$ accumulation. This indicated that acacetin could induce apoptosis and cytoprotective autophagy in Jurkat T cells simultaneously. Together, these results demonstrate that acacetin induces not only apoptotic cell death via activation of Bak, loss of ${\Delta}{\Psi}m$, and activation of the mitochondrial caspase cascade, but also cytoprotective autophagy resulting from suppression of the Akt-mTOR pathway. Furthermore, pharmacologic inhibition of the autophagy pathway augments the activation of Bak and resultant mitochondrial damage-mediated apoptosis in Jurkat T cells.

Expression of Poly (ADP-ribose) Polymerase During Apoptosis Induced by Ultraviolet Radiation in HeLa $S_3$ Cells

  • Chang, Jeong-Hyun;Kwon, Heun-Young
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.349-354
    • /
    • 2006
  • Induction of apoptosis allows the organism to get rid of abnormal cells and also of tumor cells. Understanding the mechanism involved in Ultraviolet radiation (UV) induced apoptosis may improve its therapeutic efficacy. In this study, we present expression of poly (ADP-ribose) polymerase (PARP) during apoptosis induced by UV in HeLa $S_3$ cells. Four different assays were performed in this study: morphological assessment of apoptotic cells and cell viability, DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, and expression of PARP by the western blot analysis. The percentages of apoptotic HeLa $S_3$ cells irradiated with $75J/m^2$ UV was increased continuously from 3 hrs incubation. DNA ladder pattern was appeared at 6 hrs. The amount of nucleosomal DNA fragments in cells treated UV increased from 3 to 12 hrs incubation and gradually decreased. The cleavage of PARP in HeLa $S_3$ cells irradiated with UV was induced, and the cleavage of PARP was more delayed in the cells pretreated with $5J/m^2$ UV and subsequently irradiated with $75J/m^2$ UV. than that in the cells only irradiated with $75J/m^2$ UV. Thus these data suggest that the cleavage of PARP relates with DNA fragmentation associated with apoptosis.

  • PDF

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

  • Song, Kyoung-Ju;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • $Toxoplasma$ $gondii$ penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with $T.$ $gondii$ through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of $T.$ $gondii$-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with $T.$ $gondii$ disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that $T.$ $gondii$ induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.

Arsenic Trioxide Induces Apoptosis in Chronic Myelogenous Leukemia K562 Cells:Possible Involvement of p38 MAP Kinase

  • Shim, Moon-Jeong;Kim, Hyun-Jeong;Yang, Seung-Ju;Lee, In-Soo;Choi, Hyun-Il;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • Arsenic trioxide ($As_O_3$) was recently demonstrated to be an effective inducer of apoptosis in patients with relapsed acute promyelocytic leukemia (APL) as well as patients with APL in whom all-trans-retinoic acid and conventional chemotherapy failed. Chronic myelogenous leukemia cells are highly resistant to chemotherapeutic drugs. To determine if $As_O_3$ might be useful for the treatment of chronic myelogenous leukemia, we examined the ability of $As_O_3$ to induce apoptosis in K562 cells. In vitro cytotoxicity of $As_O_3$ was evaluated in K562 cells by a MTT assay: the $IC_50$ value for $As_O_3$ was determined to be $10\;{\mu}m$. When analyzed by agarose gel electorphoresis, the DNA fragments became evident after incubation of the cells with $20\;{\mu}m$ $As_O_3$ for 24 h. We also found morphological changes and chromatin condensation of the cells undergoing apoptosis. Activation of caspase-3 was observed 6 h after treatment with $20\;{\mu}m$ $As_O_3$ by a Western blot analysis. Next, we examined the MAP kinase-signaling pathway of $As_O_3$-induced apoptosis in K562 cells. $As_O_3$ at $10\;{\mu}m$ strongly induced the activation of p38, inhibited $As_O_3$ induced apoptotic cell death. These results suggest that $As_O_3$ is able to induce the apoptotic activity in K562 cells, and its apoptotic mechanism may be associated with the activation of p38.

Vitexicarpin Induces Apoptosis in Human Prostate Carcinoma PC-3 Cells through G2/M Phase Arrest

  • Meng, Fan-Min;Yang, Jing-Bo;Yang, Chun-Hui;Jiang, Yu;Zhou, Yong-Feng;Yu, Bo;Yang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6369-6374
    • /
    • 2012
  • Vitexicarpin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone), a polymethoxyflavone isolated from Viticis Fructus (Vitex rotundifolia Linne fil.), has long been used as an anti-inflammatory herb in traditional Chinese medicine. It has also been reported that vitexicarpin can inhibit the growth of various cancer cells. However, there is no report elucidating its effect on human prostate carcinoma cells. The aim of the present study was to examine the apoptotic induction activity of vitexicarpin on PC-3 cells and molecular mechanisms involved. MTT studies showed that vitexicarpin dose-dependently inhibited growth of PC-3 cells with an $IC_{50}{\sim}28.8{\mu}M$. Hoechst 33258 staining further revealed that vitexicarpin induced apoptotic cell death. The effect of vitexicarpin on PC-3 cells apoptosis was tested using prodium iodide (PI)/Annexin V-FITC double staining and flow cytometry. The results indicated that vitexicarpin induction of apoptotic cell death in PC-3 cells was accompanied by cell cycle arrest in the G2/M phase. Furthermore, our study demonstrated that vitexicarpin induction of PC-3 cell apoptosis was associated with upregulation of the proapoptotic protein Bax, and downregulation of antiapoptotic protein Bcl-2, release of Cytochrome c from mitochondria and decrease in mitochondrial membrane potential. Our findings suggested that vitexicarpin may become a potential leading drug in the therapy of prostate carcinoma.

Antiproliferative and Apoptotic Effects of Sasa quelpaertensis Nakai in Human Cancer Cells (제주조릿대의 인간 암세포 증식 저해와 자연사멸 효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.903-909
    • /
    • 2014
  • Plants are an invaluable source of potential new anti-cancer drugs. Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) is one of these plants with medical value, which is a bamboo grass widely distributed in Mt. Halla on Jeju Island, Korea. Here, we investigated the apoptotic effects of S. quelpaertensis leaf extracts in six human cancer cell lines (A549, MCF-7, HepG-2, Hela, HCT116 and A375). MTT assay signified the antiproliferative nature of S. quelpaertensis extracts against all tested cancer cells: S. quelpaertensis displayed slight cytotoxicity against A549, MCF-7 and HepG-2 cells, whereas it was exclusively cytotoxic to Hela, HCT116 and A375 cells. Apoptotic cells were evaluated using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). PI staining indicated increasing accumulation of Hela, HCT116 and A375 cells at sub-G1 phase. Further events like generation of nitric oxide ($NO^{\bullet}$) were accompanied in the S. quelpaertensis Nakai-induced apoptosis. Augmented $NO^{\bullet}$ generation resulted in the DNA fragmentation of Hela, HCT116 and A375 cells by treatment with S. quelpaertensis leaf extracts. These results suggest that S. quelpaertensis may be a potential natural resource for treating cancer cell. To identify the exact mechanisms of molecular mechanism of S. quelpaertensis induced apoptosis awaits further investigation.

Anti-tumor Activity of Saussurea laniceps against Pancreas Adenocarcinoma

  • Lee, Keyong Ho;Kim, Byeong- Soo;Rhee, Ki-Hyeong
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2017
  • The purpose of this study was to confirm the anti-tumor activity of an ethanol extract of Saussurea laniceps against pancreatic tumor and to isolate the active compound from S. laniceps extract. Treatment with S. laniceps extract and hispidulin inhibited proliferation of pancreatic cell lines, such as Capan-1, Capan-2, Panc-1 and S2-013 in a dose-dependent manner using the hollow fiber assay. Hispidulin showed typical hallmarks of apoptotic cell death a significant anti-tumor activity on Capan-2 cells at a dose of 100 mg/kg and 200 mg/kg. S. laniceps has potential cytotoxic and apoptotic effects on human pancreatic carcinoma cells. Its mechanism of action might be associated with the apoptotic cell death through DNA fragmentation.