• Title/Summary/Keyword: apoptosis-like death

Search Result 104, Processing Time 0.028 seconds

Curcumin-Induced Apoptosis of A-431 Cells Involves Caspase-3 Activation

  • Shim, Joong-Sup;Lee, Hyung-Joo;Park, Sang-shin;Cha, Bong-Gee;Chang, Hae-Ryong
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.189-193
    • /
    • 2001
  • Curcumin a yellow pigment from Curcuma Tonga, has been known to possess antioxidative and anticarcinogenic properties, as well as to induce apoptosis in some cancer cells. There have been, however, several contradictory reports that hypothesized curcumin (a hydrophobic molecule) can bind a membrane Gpid bilayer and induce nonspecific cytotoxicity in some cell lines. Why curcumin shows these contradictory effects is unknown. In A-431 cells, growth inhibition by curcumin is due mostly to the specific inhibition of the intrinsic tyrosine kinase activity of the epidermal growth factor receptor, as reported earlier by Korutla et al. Thus, we assumed that the cell death of A-431 by curcumin might be due to the specific induction of apoptosis. In this paper we clearly show that curcumin induces apoptosis in A-431 cells. The cureumin-induced cell death of A-431 exhibited various apoptotic features, including DNA fragmentation and nuclear condensation. Furthermore, the curcumin-induced apoptosis of A-431 cells involved activation of caspase-3-like cysteine protease. Involvement of caspase-3 was further confirmed by using a caspase-3 specific inhibitor, DEVD-CHO. In another study, decreased nitric oxide (NO) production was also shown in A-431 cells treated with curcumin, which seems to be the result of the inhibition of the iNOS expression by curcumin, as in other cell lines. However, 24 h after treatment of curcumin there was increased NO production in A-431 cells. This observation has not yet been clearly explained. We assumed that the increased NO production may be related to denitrosylation of the enzyme catalytic site in caspase-3 when activated. Taken together, this study shows that the cell death of A-431 by curcumin is due to the induction of apoptosis, which involves caspase-3 activation.

  • PDF

Identification of Chinese Cabbage Sentrin as a Suppressor of Bax-Induced Cell Death in Yeast

  • Sawitri, Widhi Dyah;Slameto, Slameto;Sugiharto, Bambang;Kim, Kyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.600-606
    • /
    • 2012
  • Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier-1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-$Leu^-$-$Ura^-$ medium. The results suggest that BrSE ($\underline{B}$rassica rapa $\underline{S}$entrin $\underline{E}$ST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.

Effects of Danchun-hwan on Oxidative Damage of Human Neural Cell (단천환이 사람신경세포의 산화적 손상에 미치는 영향)

  • 한상혁;김명선;이지현;김도환;나영훈;조광호;박래길;문병순
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.183-192
    • /
    • 2000
  • Objectives : The present study was carried out to investigate the effects of Danchun-hwan(DCH) on the peroxynitrite-induced neural cell death in human neuroblastoma cell line, SH-SY5Y. Methods : The cultured cells were pretreated with DCH and exposed to 3-morpholinosydnonimine(SIN-1) that simultaneously generates NO and superoxide, thus possibly forming peroxynitrite. The cell damage was assessed by using MTT assay and crystal violet staining. Results : Exposure of the cells to SIN-1 for 24hr induced 75% apoptotic cell death, as evaluated by the occurrence of morphological nuclear changes characteristic of apoptosis using 4', 6-diamidino-2-phenylinole(DAPI). However, pretreatment of SH-SY5Y with the water extracts of DCH, inhibited the apoptotic cell death in a dose-dependent manner. DCH also inhibited SIN-1-induced apoptotic caspase 3-like protease activity in a dose-dependent manner. DCH recovered the depleted glutathione levels by SIN-1. Conclusions : Taken together, it is suggested that DCH protected human neuroblastoma cell line, SH-SY5Y, from the free radical injury mediated by peroxynitrite by a mechanism of elevating antioxidant, GSH.

  • PDF

Lipoteichoic Acid Isolated from Staphylococcus aureus Induced THP-1 Cell Apoptosis through an Autocrine Mechanism of Cytokines and SOCS-1-Mediated Bcl2 Inhibition

  • Jeon, Boram;Kim, Hangeun;Chung, Dae Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.293-300
    • /
    • 2022
  • Lipoteichoic acid (LTA) regulates the immune system, including inflammatory responses, through TLR2-mediated signaling pathways. LTA isolated from Staphylococcus aureus (aLTA) has been shown to induce apoptosis, but the detailed mechanism has not been identified. We found that aLTA induced apoptosis through an autocrine mechanism in the human monocyte-like cell line, THP-1. We observed that the expression level of the anti-apoptosis protein, Bcl2, was suppressed in LTA-treated THP-1 cells. In addition, the cytokines, TNF-α and IFN-γ, which have been shown to induce apoptosis in some cell lines, were involved in THP-1 cell death via the modulation of Bcl2. The suppression of Bcl2 by aLTA was recovered when the negative regulator, SOCS-1, was knocked down. Taken together, these results showed that aLTA induced apoptosis in THP-1 cells through an autocrine mechanism of cytokines and SOCS-1-mediated Bcl2 inhibition.

Cytosine Arabinoside-Induced PC12 Cell Death Pathway (Cytosine Arabinoside 유도된 PC12 세포의 사망 경로)

  • Yang, Bo-Gee;Yang, Byung-Hwan;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.2
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

  • Han, Min Ho;Park, Cheol;Kwon, Taek Kyu;Kim, Gi-Young;Kim, Wun-Jae;Hong, Sang Hoon;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-$1{\beta}$-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-$FLIP_L$-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

Glycochenodeoxycholic Acid Induces Cell Death in Primary Cultured Rat Hepatocyte: Apoptosis and Necrosis

  • Chu, Sang-Hui;Park, Wol-Mi;Lee, Kyung-Eun;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.565-570
    • /
    • 1999
  • Intracellular accumulation of bile acids in the hepatocytes during cholestasis is thought to be pathogenic in cholestatic liver injury. Due to the detergent-like effect of the hydrophobic bile acids, hepatocellular injury has been attributed to direct membrane damage. However histological findings of cholestatic liver diseases suggest apoptosis can be a mechanism of cell death during cholestatic liver diseases instead of necrosis. To determine the pattern of hepatocellular toxicity induced by bile acid, we incubated primary cultured rat hepatocytes with a hydrophobic bile acid, Glycochenodeoxycholate (GCDC), up to 5 hours. After 5 hours incubation with $400\;{\mu}M$ GCDC, lactate dehydrogenase released significantly. Cell viability, quantitated in propidium iodide stained cells concomitant with fluoresceindiacetate was decreased time- and dose-dependently. Most nuclei with condensed chromatin and shrunk cytoplasm were heavily labelled time- and dose-dependently by a positive TUNEL reaction. These findings suggest that both apoptosis and necrosis are involved in hepatocytes injury caused by GCDC.

  • PDF

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.425-433
    • /
    • 2023
  • During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

The Gene Expression Profiling in Murine Cortical Cells Undergoing Programmed Cell Death (PCD) Induced by Serum Deprivation

  • Yang, Moon-Hee;Yoo, Kyung-Hyun;Yook, Yeon-Joo;Park, Eun-Young;Jeon, Jeong-Ok;Choi, Seo-Hee;Park, So-Young;Woo, Yu-Mi;Lee, Min-Joo;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.277-285
    • /
    • 2007
  • PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.

Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAILInduced Apoptosis

  • Zhang, Ya-Ping;Kong, Qing-Hong;Huang, Ying;Wang, Guan-Lin;Chang, Kwen-Jen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2251-2256
    • /
    • 2015
  • To study effects of cellular FLICE (FADD-like IL-$1{\beta}$-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAILinduced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.