DOI QR코드

DOI QR Code

The Gene Expression Profiling in Murine Cortical Cells Undergoing Programmed Cell Death (PCD) Induced by Serum Deprivation

  • Yang, Moon-Hee (Department of Biological Science, Sookmyung Women's University) ;
  • Yoo, Kyung-Hyun (Department of Biological Science, Sookmyung Women's University) ;
  • Yook, Yeon-Joo (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Eun-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Jeon, Jeong-Ok (Department of Biological Science, Sookmyung Women's University) ;
  • Choi, Seo-Hee (Department of Biological Science, Sookmyung Women's University) ;
  • Park, So-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Woo, Yu-Mi (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Min-Joo (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
  • Published : 2007.03.31

Abstract

PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.

Keywords

References

  1. Ashburner, S. D., Westerheide, A. S. and Baldwin Jr. (2001) The p65 (RelA) subunit of NF-kB interacts with the histone deacetylase (HDAC) corepressors HDACI and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21, 7065-7077. https://doi.org/10.1128/MCB.21.20.7065-7077.2001
  2. Chen, R. W., Saunders, P. A., Wei, H., Li, Z., Seth, P. and Chuang, D. M. (1999) Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J. Neurosci. 19, 9654-9662. https://doi.org/10.1523/JNEUROSCI.19-21-09654.1999
  3. Chiang, P. W., Zhang R., Stubbs, L., Zhang, L., Zhu, L. and Kurnit, D. M. (1998) Comparison of Murine Supt4h and a nearly identical expressed, processed gene: evidence of sequence conservation through gene conversion extending into the untranslated regions. Nucleic Acids Res. 26, 4960-4964. https://doi.org/10.1093/nar/26.21.4960
  4. Eilers, A., Whitfield, J., Babij, C., Rubin, L. L. and Ham, J. (1998) Role of the Jun Kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neuron. J.Neurosci. 18, 1713-1724. https://doi.org/10.1523/JNEUROSCI.18-05-01713.1998
  5. Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906. https://doi.org/10.1038/sj.onc.1207521
  6. Hartzog, G. A., Wada, T. Handa, H. and Winston, F. (1998) Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces, Genes Dev. 12, 357-369. https://doi.org/10.1101/gad.12.3.357
  7. Huang, B. H., Laban, M., Leung, C. H., Lee, L., Lee, C. K., Salto-Tellez, M G., Raju, C. and Hooi, S. C. (2005) Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 12, 395-404. https://doi.org/10.1038/sj.cdd.4401567
  8. Jia, L., Dourmashkin, R. R., Allen, P. D., Gray, A. B., Newland, A. C. and Kelsey, S. M. (1997) Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br. J. Haematol. 98, 673-685. https://doi.org/10.1046/j.1365-2141.1997.2623081.x
  9. Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2002) Role of the Sin3-Histone deacetylase complex in growth regulation by the candidate tumor supperssor p33ING1. Mol. Cell. Biol. 22, 835-848. https://doi.org/10.1128/MCB.22.3.835-848.2002
  10. Martinet, W., De Meyer, G. R., Herman, A. G. and Kockx, M. M. (2005) Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells. Biotechnol. Lett. 27, 1157-1163. https://doi.org/10.1007/s10529-005-0007-y
  11. Matsuura, A., Tsukada, M., Wada, Y. and Ohsumi, Y. (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245-250. https://doi.org/10.1016/S0378-1119(97)00084-X
  12. Meier, P., Finch, A. and Evan, G. (2000) Apoptosis in development, Nature 407, 796-801. https://doi.org/10.1038/35037734
  13. Meijer, A. J. and Codogno, P. (2004) Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell Biol. 36, 2445-2462. https://doi.org/10.1016/j.biocel.2004.02.002
  14. Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., Hamada, S. and Yoshimori, T. (2004) Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040. https://doi.org/10.1126/science.1103966
  15. Newmark, P. A., Mohr, S. E., Gong, L. and Boswell, R. E. (1997) Mago nashi mediateds the posterior focllicle cell-to- oocyte signal to organize axis formation in Drosophila. Development 124, 3197-3207.
  16. Pettmann, B. and Henderson, C. E. (1998) Neuronal cell death. Neuron 20, 633-647. https://doi.org/10.1016/S0896-6273(00)81004-1
  17. Shen, W., Brown, N. S., Finn, P. F., Dice, J. F. and Franch, H. A. (2006) Akt and Mammalian target of rapamycin regulate separate systems of proteolysis in renal tubular cells. J. Am. Soc. Nephrol. 17, 2414-2423. https://doi.org/10.1681/ASN.2005111157
  18. Shintani, T. and Klionsky, D.J. (2004) Autophagy in health and disease, a double-edged sword. Science 306, 990-995. https://doi.org/10.1126/science.1099993
  19. Suh, Y. J., Yang, M. H., Yoon, S. J. and Park, J. H. (2006) GEDA: New knowledge base of gene expression in drug addiction. J. Biochem. Mol. Biol. 39, 441-447. https://doi.org/10.5483/BMBRep.2006.39.4.441
  20. Thorburn, J., Moore, F., Rao, A., Barclay, W. W., Thomas, L. R., Grant, K. W., Cramer, S. D. and Thorburn, A. (2005) Selective inactivation of a Fas-associated death domain protein (FADD)- dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol. Biol. Cell 16, 1189-1199. https://doi.org/10.1091/mbc.E04-10-0906
  21. Tomoda, T., Bhatt, R. S., Kuroyanagi, H., hirasawa, T. and Hatten, M. E. (1999) A mouse serine/threonine kinase homologus to C.elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons, Neuron 24, 833-846. https://doi.org/10.1016/S0896-6273(00)81031-4
  22. Yan, J., Kuroyanagi, H., Tomemori, T., Okazaki, N., Asato, K., Matsuda, Y., Suzuki, Y., Ohshima, Y., Mitani, S., Masuho, Y., Shirasawa, T. and Muramatsu, M. (1999) Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains. Oncogene 18, 5850-5859. https://doi.org/10.1038/sj.onc.1202988
  23. Yi, Z., Ye, L., Liu, J., Jing, W., Timani, K. A., Yang, X., Yang, F., Wang, W., Gao, B. and Wu, Z. (2005) Gene expression profiles of HeLa cells impacted by hepatitis C vrus nonstructural protein NS4B. J. Biochem. Mol. Biol. 38, 151-160. https://doi.org/10.5483/BMBRep.2005.38.2.151

Cited by

  1. Large contiguous gene deletions in Sjögren–Larsson syndrome vol.104, pp.3, 2011, https://doi.org/10.1016/j.ymgme.2011.05.015
  2. Differentially Expressed Genes in Metastatic Advanced Egyptian Bladder Cancer vol.16, pp.8, 2015, https://doi.org/10.7314/APJCP.2015.16.8.3543
  3. Inflammatory cytokines induce specific time- and concentration-dependent MicroRNA release by chondrocytes, synoviocytes, and meniscus cells vol.34, pp.5, 2016, https://doi.org/10.1002/jor.23086
  4. Selection of Reference Genes for Quantitative Real-time RT-PCR Studies in Mouse Brain vol.37, pp.3, 2009, https://doi.org/10.1007/s12031-008-9128-9