• Title/Summary/Keyword: apobec-1

Search Result 4, Processing Time 0.023 seconds

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF

Analysis of SNPs in Bovine CSRP3, APOBEC2 and Caveolin Gene Family (소의 CSRP3, APOBEC2, Caveolin 유전자들의 단일염기다형 분석)

  • Bhuiyan, M.S.A.;Yu, S.L.;Kim, K.S.;Yoon, D.;Park, E.W.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.719-728
    • /
    • 2007
  • The cysteine and glycine rich protein 3 (CSRP3), apolipoprotein B mRNA editing enzyme catalytic polypeptide‐like 2(APOBEC2) and caveolin (CAV) gene family(CAV1, CAV2, CAV3) have been reported to play important roles for carcass and meat quality traits in pig, mouse, human and cattle. As an initial step, we investigated SNPs in these 5 genes among eight different cattle breeds. Eighteen primer pairs were designed from bovine sequence data of NCBI database to amplify the partial gene fragments. Sequencing results revealed 9 SNPs in the coding regions of three caveolin genes, 1 SNP in CSRP3 and 3 SNPs in APOBEC2 gene. All the identified SNPs were confirmed by PCR-RFLP. Also, 9 more intronic SNPs were detected in these genes. However, all identified mutations in the coding region do not change amino acid sequence. Allelic distributions were significantly different for 5 SNPs in CAV2, CAV3, CSRP3 and APOBEC2 genes among the eight different breeds. These results gave some clues about the polymorphisms of these genes among the cattle breeds and will be useful for further searches for identifying association between these SNPs and meat quality traits in cattle.

Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes

  • He, Pan;Tian, Nan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • Curcumin, an active ingredient of Curcuma longa L., can reduce the concentration of low-density lipoproteins in plasma, in different ways. We had first reported that curcumin exhibits hypocholesterolemic properties by improving the apolipoprotein B (apoB) mRNA editing in primary rat hepatocytes. However, the role of curcumin in the regulation of apoB mRNA editing is not clear. Thus, we investigated the effect of curcumin on the expression of multiple editing components of apoB mRNA cytidine deamination to uridine (C-to-U) editosome. Our results demonstrated that treatment with $50{\mu}M$ curcumin markedly increased the amount of edited apoB mRNA in primary mouse hepatocytes from 5.13%-8.05% to 27.63%-35.61%, and significantly elevated the levels of the core components apoB editing catalytic polypeptide-1 (APOBEC-1), apobec-1 complementation factor (ACF), and RNA-binding-motif-protein-47 (RBM47), as well as suppressed the level of the inhibitory component glycine-arginine-tyrosine-rich RNA binding protein. Moreover, the increased apoB RNA editing by $50{\mu}M$ curcumin was significantly reduced by siRNA-mediated APOBEC-1, ACF, and RBM47 knockdown. These findings suggest that curcumin modulates apoB mRNA editing by coordinating the multiple editing components of the edito-some in primary hepatocytes. Our data provided evidence for curcumin to be used therapeutically to prevent atherosclerosis.

Correlation-based and feature-driven mutation signature analyses to identify genetic features associated with DNA mutagenic processes in cancer genomes

  • Jeong, Hye Young;Yoo, Jinseon;Kim, Hyunwoo;Kim, Tae-Min
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.40.1-40.11
    • /
    • 2021
  • Mutation signatures represent unique sequence footprints of somatic mutations resulting from specific DNA mutagenic and repair processes. However, their causal associations and the potential utility for genome research remain largely unknown. In this study, we performed PanCancer-scale correlative analyses to identify the genomic features associated with tumor mutation burdens (TMB) and individual mutation signatures. We observed that TMB was correlated with tumor purity, ploidy, and the level of aneuploidy, as well as with the expression of cell proliferation-related genes representing genomic covariates in evaluating TMB. Correlative analyses of mutation signature levels with genes belonging to specific DNA damage-repair processes revealed that deficiencies of NHEJ1 and ALKBH3 may contribute to mutations in the settings of APOBEC cytidine deaminase activation and DNA mismatch repair deficiency, respectively. We further employed a strategy to identify feature-driven, de novo mutation signatures and demonstrated that mutation signatures can be reconstructed using known causal features. Using the strategy, we further identified tumor hypoxia-related mutation signatures similar to the APOBEC-related mutation signatures, suggesting that APOBEC activity mediates hypoxia-related mutational consequences in cancer genomes. Our study advances the mechanistic insights into the TMB and signature-based DNA mutagenic and repair processes in cancer genomes. We also propose that feature-driven mutation signature analysis can further extend the categories of cancer-relevant mutation signatures and their causal relationships.