• Title/Summary/Keyword: aperture

Search Result 1,968, Processing Time 0.033 seconds

Ultrasound Synthetic Aperture Beamformer Architecture Based on the Simultaneous Multi-scanning Approach (동시 다중 주사 방식의 초음파 합성구경 빔포머 구조)

  • Lee, Yu-Hwa;Kim, Seung-Soo;Ahn, Young-Bok;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • Although synthetic aperture focusing techniques can improve the spatial resolution of ultrasound imaging, they have not been employed in a commercial product because they require a real-time N-channel beamformer with a tremendously increased hardware complexity for simultaneous beamforming along M multiple lines. In this paper, a hardware-efficient beamformer architecture for synthetic aperture focusing is presented. In contrast to the straightforward design using NM delay calculators, the proposed method utilizes only M delay calculators by sharing the same values among the focusing delays which should be calculated at the same time between the N channels for all imaging points along the M scan lines. In general, synthetic aperture beamforming requires M 2-port memories. In the proposed beamformer, the input data for each channel is first upsampled with a 4-fold interpolator and each polyphase component of the interpolator output is stored into a 2-port memory separately, requiring 4M 2-port memories for each channel. By properly limiting the area formed with the synthetic aperture focusing, the input memory buffer can be implemented with only 4 2-port memories and one short multi-port memory.

Designs on CPW-FED Aperture Antenna for UWB Applications for Wireless System in a Ship (선박 내 무선 시스템을 위한 UWB용 CPW-FED APERTURE 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.347-351
    • /
    • 2008
  • In this paper, a new co-planar waveguide ultra-wideband aperture is designed as wireless application in ships. The designed antenna consists of a rectangular aperture on a determined ground plane and a mushroom shaped stub. The mushroom-shaped stub, which is simple, convenient to analyze and optimise, has less parameters. This antenna has compact aperture size $21.1{\times}8.1mm^2$, designed on FR-4 substrate with dielectric constant of 4.3, thickness of 1.5mm. CPW fed planar antenna has the advantages of wide-bandwidth, low-cost and easy interaction with the radio frequency front end circuitry.

  • PDF

Estimation of optical losses in dielectric apertured terahertz vertical cavity lasers (개구 크기에 따른 테라헤르츠 표면 발광 반도체 레이저의 광손실에 대한 연구)

  • 유영훈
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.92-96
    • /
    • 2003
  • Dielectric apertures in vertical cavity laser have been used for improved device performance. Numerical analysis is used to estimate the optical losses as the aperture diameter is reduced. The optical losses depend on the aperture size, thickness and location. The optical loss strongly depend on the aperture size and thickness when the aperture size is similar or smaller than the emitted wavelength. The optical loss is negligible and not depend on the aperture thickness when the aperture size is larger than 5 times emitted wavelength.

A Novel 3-D Imaging Configuration Exploiting Synthetic Aperture Ladar

  • Guo, Liang;Huang, Yinli;Li, Xiaozhen;Zeng, Xiaodong;Tang, Yu;Xing, Mengdao
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.598-603
    • /
    • 2017
  • Traditional three-dimensional (3-D) laser imaging systems are based on real aperture imaging technology, whose resolution decreases as the range increases. In this paper, we develop a novel 3-D imaging technique based on the synthetic aperture technology in which the imaging resolution is significantly improved and does not degrade with the increase of the range. We consider an imaging laser radar (ladar) system using the floodlight transmitting mode and multi-beam receiving mode. High 3-D imaging resolutions are achieved by matched filtering the linear frequency modulated (LFM) signals respectively in range, synthetic aperture along-track, and the real aperture across-track. In this paper, a novel 3-D imaging signal model is given first. Because of the motion during the transmission of a sweep, the Doppler shift induced by the continuous motion is taken into account. And then, a proper algorithm for the 3-D imaging geometry is given. Finally, simulation results validate the effectiveness of the proposed technique.

Synthetic Aperture Processing in Beamspace Using Twin-line Array (이중 선 배열을 이용한 빔 영역 합성 처리)

  • 양인식;김기만;윤대희;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2001
  • In this Paper, we Propose synthetic aperture technique for twin-line may. Sin91e-line way is required long aperture size in order to achieve high SNR and angular resolution in shallow water Ultra low frequency signal from far-field has left-right ambiguity at sing1e-line array. To resolve these Problems, we'd like to adopt the synthetic aperture technique to twin-line array. The synthetic aperture method adopts coherent processing of sub-aperture signals at successive tine intervals in the beam domain. The proposed method shows low nile error and improved angular resolution. In simulation result, average sidelobe level is reduced about 7〔dB〕when the array Peformed 5-synthesis.

  • PDF

Synthetic Aperture Sonar for Conformal Towed Array (왜곡된 형상을 갖는 어레이를 위한 합성 처리 기법)

  • 김준환;양인식;김기만;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2000
  • The previous synthetic aperture techniques have been investigated to increase signal gain, improve angular resolution and peak-to-sidelobe level ratios for towed line array sonar systems. The synthetic aperture method in this paper is performed for conformal array systems by mapping real elements on an axis to control like a linear array. The proposed method for the conformal array performs coherent processing of subaperture signals at successive time intervals in the beam domain via FFT transformations. This was confirmed by the simulation results and compared to the results from use of the synthetic aperture technique under the conformal array.

  • PDF

Designs on CPW-FED aperture antenna for uwb applications (UWB용 CPW-FED APERTURE 안테나 설계)

  • Jo, Sung-Sik;Park, Chang-Hyun;Park, Jung-Ah;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.303-307
    • /
    • 2008
  • In this paper, a new co-planar waveguide ultra-wideband aperture is designed. The designed antenna consists of a rectangular aperture on a determined ground plane and a mushroom shaped stub. The mushroom-shaped stub, which is simple, convenient to analyze and optimise, has less parameter. This antenna has compact aperture size $21.1{\times}8.1mm^2$, designed on FR-4 substrate with dielectric constant of 4.3, thickness of l.5mm. CPW fed planar antenna has the advantages of wide-bandwidth, low-cost and easy interaction with the radio frequency front end circuitry.

  • PDF

Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition (정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

Aircraft Motion Identification Using Sub-Aperture SAR Image Analysis and Deep Learning

  • Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.

A Numerical Study on the Correlation between Joint Roughness and Hydraulic Characteristics (절리면 거칠기와 수리특성의 상관성에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.176-186
    • /
    • 2014
  • Roughness, aperture and filling material of rock joint are widely considered to affect the hydraulic characteristics of joint. Among these factors, in this study, the joint roughness was examined with artificial joint profiles generated by Monte Carlo simulating on the original profiles suggested by Barton and Choubey(1977). Original profiles and revised profiles were combined to establish flow channel models, in which the hydraulic characteristics were analyzed numerically on the basis of minimum aperture changes and flow channel shapes. Maximum flow rate was identified at the growing point of flow area after passing through minimum aperture generated by the two profiles, and it was resulted that maximum flow rate is inversely proportional to minimum aperture. Maximum flow rate per unit area showed different values because flow channel shapes and minimum aperture locations are different in each model. In flow channel, mechanical aperture showed approximately 1.07 ~ 3.00 times larger than hydraulic aperture. In this study, mechanical and hydraulic aperture were concluded to be closely related to $A_i$ value, and their relations can be denoted by $e_m=0.519A^{0.7169_i}$ and $e_h=0.6182A^{0.239}_i$, respectively.