• Title/Summary/Keyword: antitumor cytotoxicity

Search Result 367, Processing Time 0.029 seconds

Antitumor Effect of an Adenoviral Cytosine Deaminase/Thymidine Kinase Fusion Gene in C6 Glioma Cells (아데노 바이러스 Cytosine Deaminase/Thymidine Kinase 융합 유전자의 항 종양효과)

  • Kim, Young Woo;Choi, Jae Young;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.13-19
    • /
    • 2001
  • Objective : We investigated the feasibility of a double suicide gene/prodrug therapy, involving direct introduction of the herpes simplex virus Type 1 thymidine kinase(TK) gene and the Escherichia coli cytosine deaminase(CD) gene, via a recombinant adenoviral vector and ganciclovir(GCV) and/or 5-fluorocytosine(5-FC) treatment, in C6 glioma cells. Methods : Efficient gene transfer and transduction of C6 glioma cells via a recombinant adenovirus were evaluated by infecting cells with adenovirus bearing the ${\beta}$-galactosidase gene and then staining cells with 5-bromo-4-chloro-3-indolyl-13-D-galactoside. CD/TK expression in cells infected with adenovirus bearing the CD/TK gene(ad-CD/TK) was examined by immunoblotting analysis. For in vitro cytotoxicity experiments, the cells were infected with ad-CD/TK or ad-${\Delta}E1$(as a control). After addition of a variety of concentrations of GCV and 5-FU, either separately or in combination, cell viability was determined by staining the cells with crystal violet solution 6 days after infection. Result : C6 glioma cells were efficiently transduced with recombinant adenoviral vector at multiplicities of infection of 200 or more. In vitro cytotoxicity of GCV and/or 5-FC, either alone or in combination, was exclusively observed in the cells transduced with ad-CD/TK. Obvious cytotoxicity(>50% inhibition) was observed in the presence of 5-FC at concentrations greater than 30ug/ml or GCV at concentrations greater than 0.3ug/ml at a multiplicity of infection of 100. Additionally, cytotoxicity in the presence of both GCV and 5-FC was greater than that after sinlge-prodrug treatments, indicating additive effects of the prodrug treatments. Conclusion : The administration of a double-suicide gene/prodrug therapy might have great potential in the treatment of brain tumors.

  • PDF

Cytotoxicity and Antitumor Effects of Insambaekhaptang on C57BL/6 Mice Melanoma-induced Lung Metastasis (인삼백합탕(人蔘百合湯)이 B16세포에 대한 세포독성능 및 C57BL/6계 생쥐의 폐전이암의 억제에 미치는 영향)

  • Hwang, Ho-Jun;Ha, Ji-Yong
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.3 no.1
    • /
    • pp.85-98
    • /
    • 1997
  • Oriental medicine as a candidate for effective cancer treatment recently gain positive concerns in fields of therapeutic oncology. that is why some herbal medicines have been empirically safer in toxicity than anticancer drugs used in western medicine, and to show excellent therapeutic efficacy in human trial. Thus, these effects by clinically applied-herbs have not yet fully demonstrated in experimental tumor model. This study was initiated to evaluate the antitumor effect of Insambaekhaptang as candidate of antitumor-herbal agent against B16 melanoma metastasized into C57BL/6 mice lung. In experiment to test whether Insambaekhaptang can directly kill cancer cells in vitro or not, Insambaekhaptang showed direct killing action in concentration or higher against B16 melanoma cells using MTT assay, and showed lower IC50. Another experiment to know whether Insambaekhaptang can inhibit growth and metastasis of cancer cell or not, Insambaekhaptang significantly inhibited Solid tumor by intraperiperal injected-melanoma and lung metastasis induced by intravenous injected-melanoma in inbred C57BL/6 mice. When quantitative survival time increasing, we could obtain results that increased 113% in treated by Insambaekhaptang. These results show that Insambaekhaptang can inhibit growth of B16 melanoma cells through various biological mechanisms.

  • PDF

Synthesis of Benzo[c]phenanthridine Derivatives and their in Vitro Antitumor Activities

  • Cho, Won-Jea;Yoo, Su-Jeong;Chung, Byung-Ho;Choi, Bo-Gil;Cheon, Seung-Hoon;Whang, Soon-Ho;Kim, Sin-Kyu;Kang, Boo-Hyon;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.321-325
    • /
    • 1996
  • Aiming at the development of anticancer agents by modification of phenolic benzo[c]phenanthridine alkaloid, additional hydroxyl group was put on C10 position of fagaridine (1) by a biomimetic synthetic procedure to afford 10-hydroxyfagaridine (12). All of the synthetic intermediates were also screened in vitro antitumor activities against five different cell lines as well as 12. Among them the representative cytotoxic results are shown as follows; P-quinone (11) $[ED_50;(A549=0.22; {\mu}g/ml)$, $(HCT;15=0.21 {\mu}g/ml)$, fagaridine (1) $(HCT;15=0.41 {\mu}g/ml)$, olefin (6) $(HCT; 15=0.06 {\mu}g/ml)$, acetal (7) $(SKMEL-2=0.07 {\mu}g/ml)$, dihydrofagaridne (10) $(A549=0.38 {\mu}g/ml)$, 10-hydroxyfagaridine (12) $(A 549=0.45{\mu}g/mi)$. From these observation three main remarks can be drawn; (i) the iminium part of benzo[c]phenanthridine is not essential for showing acitvities, (ii) the additional hydroxyl group did not contribute to enhance the cytotoxicity, (iii) the 3-arylisoquinolin-1(2H)-one derivatives were found to display significant in vitro antitumor activity.

  • PDF

Green Synthesis of Silver Nanoparticles Using Cell Extracts of Anabaena doliolum and Screening of Its Antibacterial and Antitumor Activity

  • Singh, Garvita;Babele, Piyoosh K.;Shahi, Shailesh K.;Sinha, Rajeshwar P.;Tyagi, Madhu B.;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1354-1367
    • /
    • 2014
  • In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEM-selected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag-CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

Radical Intermediate Generation and Cell Cycle Arrest by an Aqueous Extract of Thunbergia Laurifolia Linn. in Human Breast Cancer Cells

  • Jetawattana, Suwimol;Boonsirichai, Kanokporn;Charoen, Savapong;Martin, Sean M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4357-4361
    • /
    • 2015
  • Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an $IC_{50}$ value of $843{\mu}g/ml$. Treatments with extract for 24h at $250{\mu}g/ml$ or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals.

Apoptosis-Induced Cell Death due to Oleanolic Acid in HaCaT Keratinocyte Cells -a Proof-of-Principle Approach for Chemopreventive Drug Development

  • George, V. Cijo;Kumar, D.R. Naveen;Suresh, P.K.;Kumar, R. Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2015-2020
    • /
    • 2012
  • Oleanolic acid (OA) is a naturally occurring triterpenoid in food materials and is a component of the leaves and roots of Olea europaea, Viscum album L., Aralia chinensis L. and more than 120 other plant species. There are several reports validating its antitumor activity against different cancer cells apart from its hepatoprotective activity. However, antitumor activity against skin cancer has not beed studied well thus far. Hence the present study of effects of OA against HaCaT (immortalized keratinocyte) cells - a cell-based epithelial model system for toxicity/ethnopharmacology-based studies - was conducted. Radical scavenging activity ($DPPH{\cdot}$) and FRAP were determined spectrophotometrically. Proliferation was assessed by XTT assay at 24, 48 and 72 hrs with exposure to various concentrations (12.5-200 ${\mu}M$) of OA. Apoptotic induction potential of OA was demonstrated using a cellular DNA fragmentation ELISA method. Morphological studies were also carried out to elucidate its antitumor potential. The results revealed that OA induces apoptosis by altering cellular morphology as well as DNA integrity in HaCaT cells in a dose-dependent manner, with comparatively low cytotoxicity. The moderate toxicity observed in HaCaT cells, with induction of apoptosis, possibly suggests greater involvement of programmed-cell death-mediated mechanisms. We conclude that OA has relatively low toxicity and has the potential to induce apoptosis in HaCaT cells and hence provides a substantial and sound scientific basis for further validation studies.

제 3세대 백금착체 항암제 신약개발 2. Antitumor activity and ex vivo pharmacodynamics of SKI 2053R

  • 박재갑;홍원선;방영주;조용백;태주호;김훈택;김대기;김기협;김노경
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.74-74
    • /
    • 1993
  • The in vitro cytotoxicity of SKI 2053R was evaluated against human tumor cell lines along with those of cisplatin and carboplatin using MTT assay. The cell lines tested were two human lung cancer cell lines and five human stomach cancer celt lines. The level of cytotoxic effects of SKI 2053R against two human lung cancer cell lines was located between cisplatin and carboplatin. However, the cytotoxic activity of SKI 2053R against five human stomach cancer cell lines was similar to that of cisplatin. SKI 2053R is considered to be selectively cytotoxic toward human stomach cancer cell lines. We carried out pharmacokinetic and ex vivo phrmacodynamic studies of SKI 2053R in beagle dogs to predict the clinical antitumor effect of SKI2053R, comparing with those of cisplatin and carboplatin. In ex vivo pharmacodynamics which used MTT assay as bioassay on the 2 lung and 5 stomach cancer cell, mean antitumor indexes (ATIs) of SKI 2053R were highest among three compounds in both lung and stomach cancer cell lines, especially in stomach cancer cell. Much higher ATI profile and maximal inhibition rates of SKI 2053R appeared in the stomach cancer cells will give desirable advantages to clinical trial s against gastric carcinoma. The anti tumor activity and target organ toxicity of SKI 2053R were compared with those of cisplatin on stomach cancer cell line, KATO III xenografted into nude BALB/c(nu/nu) mice. All groups of cisplatin and SKI 2053R showed active tumor regression. The inhibition rates(IR) of SKI 2053R were higher than that of cisplatin on the basis of mean IR. Though the loss of body weight was observed in all groups from the first week, the SKI 2053R group recovered it soon from the third week after the initiation of treatment, maintaining the most active anti tumor activity among three groups.

  • PDF

Design, Synthesis, Antitumor Activity and Mode of Action of Novel Oxiranyl and Thiiranyl Phenol Derivatives

  • Yang, Zunhua;Kang, Jin-Ah;Kim, Won-Hee;Park, Ah-Young;Kim, Hyung-Sik;Kim, Jung-Su;Kim, Jin-Ah;Gong, Ping;Jeong, Lak-Shin;Moon, Hyung-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1463-1469
    • /
    • 2009
  • Eleven novel oxiranyl and thiiranyl phenolic compounds were synthesized as potential antitumor agents using epichlorohydrin and epithiohydrin in the presence of $K_2CO_3$. Cytotoxicities were found in range of I$C_{50}$ values of 2.5-14.8 $\mu$M, which was partially attributed to topoisomerase II inhibition. Bis-thiiranyl anthraquinone analog, 19 showed more cytotoxicity against MDA-MB-231 (breast cancer cell) and PC3 (prostate cancer cell) after 24 and/or 48 h and more potent topoisomerase II inhibitory activity than etoposide.

An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma

  • Wei, Mulan;Liu, Xujie;Cao, Chunyu;Yang, Jianlin;Lv, Yafeng;Huang, Jiaojiao;Wang, Yanlin;Qin, Ye
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.572-577
    • /
    • 2018
  • Recent studies showed that the PD-1/PD-L1 checkpoint blockade is a dramatic therapy for melanoma by enhancing antitumor immune activity. Currently, major strategies for the PD-1/PD-L1 blockade have mainly focused on the use of antibodies and compounds. Seeking an alternative approach, others employ endogenous proteins as blocking agents. The extracellular domain of PD-1 (ePD1) includes the binding site with PD-L1. Accordingly, we constructed a PD-1-based recombinantly tailored fusion protein (dFv-ePD1) that consists of bivalent variable fragments (dFv) of an MMP-2/9-targeted antibody and ePD1. The melanoma-binding intensity and antitumor activity were also investigated. We found the intense and selective binding capability of the protein dFv-ePD1 to human melanoma specimens was confirmed by a tissue microarray. In addition, dFv-ePD1 significantly suppressed the migration and invasion of mouse melanoma B16-F1 cells, and displayed cytotoxicity to cancer cells in vitro. Notably, dFv-ePD1 significantly inhibited the growth of mouse melanoma B16-F1 tumor cells in mice and in vivo fluorescence imaging showed that dFv-ePD was gradually accumulated into the B16-F1 tumor. Also the B16-F1 tumor fluorescence intensity at the tumor site was stronger than that of dFv. This study indicates that the recombinant protein dFv-ePD1 has an intensive melanoma-binding capability and exerts potent therapeutic efficacy against melanoma. The novel format of the PD-L1-blocked agent may play an active role in antitumor immunotherapy.

Antitumor Activity of LB42907, a Potent and Selective Farnesyltransferase Inhibitor: Synergistic Effect in Combination with Other Anticancer Drugs

  • Park, Ji-Hyun;Koo, Sun-Young;Kim, Dong-Myung;Kim, Kwi-Hwa;Jeong, Shin-Wu;Chung, Hyun-Ho;Cho, Heung-Soo;Park, Joong-Hoon;Yim, Hyeon-Joo;Lee, Jin-Ho;Koh, Jong-Sung;Kim, Se-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1303-1310
    • /
    • 2008
  • Inhibitors of farnesyltransferase (FT), a key enzyme in the post-translational modifications of Ras proteins, have been extensively studied as novel anticancer agents in the preclinical stages, some of which are currently in clinical development. Previously, it has been reported that a novel FT inhibitor LB42907 inhibits Ras farnesylation in the nanomolar range in vitro. The aim of this study was to assess the antitumor efficacy of LB42907 in vitro and in vivo. Anchorage-independent growth of various human tumor cell lines was potently inhibited by treatment with LB42907, comparable to other FT inhibitors in clinical development. In the nude mouse, oral administration of LB42907 demonstrated potent antitumor activity in several human tumor xenograft models including bladder, lung and pancreas origin. Interestingly, significant tumor regression in EJ (bladder) and A549 (lung) xenografts was induced by LB42907 treatment. The effectiveness of LB42907 was also investigated in simultaneous combination with paclitaxel, vincristine, cisplatin or gemcitabine against NCI-H460, A549, and HCT116 cells in vitro using median-effect analysis. LB42907 markedly synergized with most anticancer drugs tested in this study in NCI-H460 cell. In contrast, LB42907 displayed antagonism or partial synergism with these drugs in A549 and HCT116 cells, depending on the class of combined drugs and/ or the level of cytotoxicity. Our results demonstrate that LB42907 is an effective antitumor agent in vitro and in vivo and combination of LB42907 with other chemotherapeutic drugs results in synergistic or antagonistic effects mainly in a cell line-dependent manner. Further preclinical study is warranted.