• Title/Summary/Keyword: antireflection coating

Search Result 79, Processing Time 0.032 seconds

A Study on the Photon Energy Characteristics of Photocatalytic $TiO_2$ Ferroelectrics Thin Film According to Coating Thickness (광촉매용 $TiO_2$ 강유전체 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • 김병인;전인주;이상일
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.329-334
    • /
    • 2002
  • This study evaporates TiO$_2$ layer thickness differently with RF sputtering method on Si Wafer(n-100). Thin film is made with the structure of Si+TiO$_2$ and Si+TiO$_2$+Al by evaporating TiN which is used as Antireflection of superintegrated semiconductor integrated circuit with Photo Catalyst. The research is performed to increase the characteristics of photon energy according to TiO$_2$ thickness and the reliability and reproducibility of TiO$_2$ thin film. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant ($\varepsilon$$_1$, $\varepsilon$$_2$) has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

산화아연 나노막대/PDMS 제작기술과 광학적 특성 연구

  • Go, Yeong-Hwan;Lee, Su-Hyeon;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.474-474
    • /
    • 2013
  • PDMS는 미세패턴을 위해 소프트 리소그래피 널리 활용되어질 뿐만 아니라, 재질이 투명하고 탄성과 강한 내구성을 갖고 있어 유연한 광학 및 전자소자에 이용될 수 있다. 최근에는, 이러한 PDMS를 서브파장구조(subwavelength grating structure)를 형성하거나 텍스쳐(texture)표면구조를 이용한 효과적인 반사방지막(antireflection coating)기판을 제작하여 태양전지 및 디스플레이 소자의 성능을 발전시키는 연구가 활발히 진행되고 있다. 한편, 수열합성법(hydrothermal method)이나 전기화학증착법(electrodeposition method)으로 비교적 간단한 공정을 통해서 다양한 기판위에 산화아연(ZnO) 나노막대(nanorod)를 수직정렬로 성장시킬 수 있는데, 이러한 구조는 반사방지특성의 유효 굴절률 분포(effective refractive index profile)를 갖고 있기 때문에 LED나 태양전지에 성능을 개선할 수 있다. 이에 본 연구에서는 수열합성법을 통해 성장된 수직 정렬된 산화아연 나노막대를 이용한 PDMS 표면의 미세패턴 형성하여 광학적 특성을 분석하였다. 실험을 위해, 스퍼터링을 통해서 산화아연 시드층을 형성한 후, 질산아연헥사수화물과 헥사메틸렌테트라민을 수용액에 담가두어 산화아연 나노막대를 성장시켰으며, PDMS의 베이스와 경화제의 질량비를 10:1으로 용액을 준비하여 수직 정렬된 산화아연 나노막대 표면을 casting method으로 코팅하여 열경화 처리하였다. 제작된 샘플의 형태, 구조 광특성을 관찰하기 위해서 전계방출형전자현미경, X선 회절 분석기, 분광 광도계를 이용하였다.

  • PDF

Antireflection layer Coating on the Epitaxial Base Si Solar Cell (에피텍셜 베이스 Si 태양전지의 광반사 방지막 처리)

  • 장지근;임용규;황용운
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.141-144
    • /
    • 2003
  • Si 태양전지의 기전력 형성에 이용되는 빛의 파장범위$(0.4{\mu}m\leq\lambda\leq0.97{\mu}m)$에서 AM1 스펙트럼과 Si 굴절율을 수학적으로 모델링하고 광반사 방지막$(SiO_2)$의 두께에 따른 Si 태양전지의 유효 광 흡수전력을 전산 모사하였다. 전산 모사로부터 얻어진 Si 태양전지의 유효 광흡수전력은 $SiO_2$막의 두께가 $500\AA$$1000\AA$일 때 각각 $520\;W/m^2$$450\;W/m^2$로 나타났으며, $d(SiO_2)=1000\AA$에서 최대광흡수 특성을 보였다. 광반사 방지막의 처리에 따른 유효 광흡수전력의 차이를 알아보기 위해 $SiO_2$막의 두께를 $500\AA$$1000\AA$으로 형성한 2종류의 에피텍셜 베이스 Si 태양전지$[EBS(500\AA),\;EBS(1000\AA)]$를 제작하고 효율특성을 분석한 결과, AM1 $100\;mW/cm^2$ 입사광 아래 $EBS(1000\AA)$ 전지는 $EBS(500\AA)$전지에 비해 효율이 약 $15\%$ 높게 나타났다.

  • PDF

The fabrication and characterization of composite $ZnS-SiO_2$ optical films (혼합 $ZnS-SiO_2$ 광학 박막의 제작 및 특성분석)

  • 성창민;이경진;류태욱;정종영;김석원;한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.70-75
    • /
    • 1998
  • The ZnS-SiO$_2$ composite films were fabricated by codeposition from two independent sources. The optical properties and microstructures of these composite films were investigated. The refractive indices of the composite films were compared those by Drude's fomula and showed a good agreement. it showed that microstructures of composite films are an armorphous. But microstructures of composite films with ion assisted deposition are changed from an armorphous to crystalline with increasing Zn mole fractions. We designed and fabricated a single layer antireflection coating on the crystalline silicon substrate using the refractive index of the composite films.

  • PDF

Design of antireflection coationgs on the facets of a multilayered structure waveguide device (다층 구조 도파관 소자 단면에의 무반사 코팅 설계)

  • 김용곤;김부균;주흥로
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1850-1860
    • /
    • 1996
  • We present the results for the design ofantireflection (AR) coatings on facets of a multilayered structure waveguide device. The method, whose results agree very well with the reusults of the rigorous method in the case of a symmetric three layer structure deveice, is extended for the design of AR coatings on the facets of a multilayered structure waveguide device. the field profile in a multilayered structure waveguide necessary for the use of the extended method is obtained from the transfer matrix method. The virtual four layered structure method (VFLM) is proposed to reduce the time for the design ofAR coatings because the time for the design of AR coatings using the extended method increases as the number of layers increases. The optimum coating parameters and tolerance mapsfor two different six layered waveguide devices in Ref. [9] and [10] are obtained using the extendedmethod and the VFLM,and for the three different cases approximated as three layered waveguide devices to compare the results of each case. The results of the VFLM are similar to those of the extended methodcompared to those of the three layered structure waveguide. The main reason for the above results is that the field profile in the device calculated usingthe VFLM is similar to that calculated using the extended method compared to that for three layered structure wavegjide. We conclude that the extended method or VFLM should be used for the design of AR coatings on facets of a deice required for the facet reflectivity less than 10$^{-3}$ such as a semiconductor otical amplifier.

  • PDF

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells (전기 수력학 인쇄공정을 이용한 실리콘 태양전지 전극용 Ni 잉크 제조 및 인쇄 공정 연구)

  • Lee, Youngwoo;Kim, Jihoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.593-597
    • /
    • 2015
  • Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.

Study for Improvement of Laser Induced Damage of 1064 nm AR Coatings in Nanosecond Pulse

  • Jiao, Hongfei;Cheng, Xinbing;Lu, Jiangtao;Bao, Ganghua;Zhang, Jinlong;Ma, Bin;Liu, Huasong;Wang, Zhanshan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • For the conventionally polished fused silica substrate, an around 100 nm depth redeposition polishing layer was formed on the top of surface. Polishing compounds, densely embedded in the redeposition polishing layer were the dominant factor that limited the laser induced damage threshold (LIDT) of transmission elements in nanosecond laser systems. Chemical etching, super-precise polishing and ion beam etching were employed in different ways to eliminate these absorbers from the substrate. After that, Antireflection (AR) coatings were deposited on these substrates in the same batch and then tested by 1064 nm nano-pulse laser. It was found that among these techniques only the ion beam etching method, which can effectively remove the polishing compound and did not induce extra absorbers during the disposal process, can successfully improve the LIDT of AR coatings.

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF