• Title/Summary/Keyword: antiradical

Search Result 29, Processing Time 0.031 seconds

Optimization of Ultrasound-Assisted Extraction for Antiradical Activities of Peel and Seed Extracts of Campbell Early Grapes

  • Ghafoor, Kashif;Choi, Yong Hee
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Central composite design was applied for the ultrasound-assisted extraction from peel and seed of Campbell Early grapes and the extraction processes were optimized for the antiradical activities of the extracts by using response surface methodology. Optimal conditions were 53.45% of ethanol concentration, 45.99${^{\circ}C}$ of extraction temperature and 23.93 min of extraction time for the maximum antiradical activity of grape peel extract (54.98%) and 53.14% of ethanol 56.03${^{\circ}C}$ of temperature and 29.03 min of time for maximum antiradical activity of grape seed extract (90.60%).

Antiradical activity of Azadirachta indica extracts and fractions

  • Bhatt, Lok Ranjan;Choi, Hwa-Jung;Baek, Seung-Hwa
    • Advances in Traditional Medicine
    • /
    • v.8 no.1
    • /
    • pp.81-85
    • /
    • 2008
  • In present study, total phenolic content of crude extract and antiradical activity of crude extract and different solvent fractions of Azadirachta indica were evaluated. Crude extract and most of the polar fractions showed higher radical scavenging activity. Among the crude extract and nine different fractions, the aqueous/methanol (3:1) fraction showed the highest activity.

Antiradical Capacities of Perilla, Sesame and Sunflower Oil

  • Hong, Sun-Hee;Kim, Mi-Jin;Oh, Chan-Ho;Yoon, Suk-Hoo;Song, Yeong-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • The aim of this study is to examine the radical scavenging activity of perilla and sesame oil that Koreans traditionally consume. For DPPH radical scavenging activity, oil and its hexane/70% methanol extracts (ME) are used and for superoxide and hydroxyl radical scavenging activities, ME are used. Unrefined perilla oil, sesame oil, and refined sunflower oil are used. The yields for ME of perilla, sesame and sunflower oil are 0.57, 0.61, and 0.30%, respectively, and the amounts of phenolic compounds in ME of corresponding oil are 18.77, 88.64 and $0.05\;{\mu}g$ tannic acid/mg, respectively. $IC_{50}$ for DPPH scavenging activity of perilla, sesame and sunflower oil are 2.12, 1.91, and 3.35 mg/mL, respectively and those for ME of corresponding oils are 0.42, 0.07, and 43.11 mg/mL, respectively. In DPPH assay, the solvent used for oil sample is iso-octane and that for ME is methanol. Superoxide anion scavenging activity of ME of perilla, sesame and sunflower oil tested at 1 mg/mL concentration are 21.10, 13.25, and 3.14%, respectively. Hydroxyl radical scavenging activities of those samples tested at 1 mg/mL concentration are 86.08, 93.30, and 93.17%, respectively. In summary, the refining process seems to remove the phenolic compound during oil processing. Antiradical substances in perilla and sesame oils responsible for scavenging DPPH radicals are present in the methanol fraction, while the antiradical substances in the sunflower oil are in the lipid fraction. DPPH scavenging activity of ME of sesame oil is significantly higher than that of perilla oil (p<0.05). However, superoxide anion scavenging capacity of ME of perilla oils was found to be greater than that of both sesame and sunflower oils (p<0.05).

Free radical scavenging activity of hyangsapyungwisan extract for herbal-acupuncture and protective effects against oxidative damage of HUVECs (향사평위산(香砂平胃散) 약침액(藥鍼液)의 자유기 소거활성 및 혈관내피세포의 산화적 손상에 대한 보호효과)

  • Lim, Sun-Hee;Yi, Hyo-Seung;Moon, Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.113-130
    • /
    • 2008
  • Objectives : Hyangsapyungwisan (HPS) has been used for treatment of cardiovascular diseases including of arthralgia, myalgia in traditional Korean medicine. However, the medical actions of HPS have not been clearly investigated. The aim of this study was to elucidate the antiradical and antioxidant activity of the extract for herb-acupuncture (HPS-HA) obtained from HPS. Methods & Results : HPS-HA exhibited a stronger inhibition rate (55.5%) on lipid peroxidation of rat liver homogenate induced by $FeCl_2$-ascorbic acid. In addition, HPS-HA markedly interfered with hydroxylradical generation through iron ions chelating action. While pro-oxidant effect of HPS-HA was nearly undetectable at concentrations of 0.5-10㎎/mL. Moerover, HPS-HA revealed a potent antiradical activities on 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radicals, superoxide anions, nitric oxide and peroxynitrite. Furthermore, HPS-HA inhibited copper- and AAPH-mediated oxidation of human low-density lipoprotein (LDL), and also suppressed the relative electrophoretic mobility of LDL. HPS-HA showed strong protective activity against oxidative damage of HUVECs induced by SIN-1. Conclusions : These results suggest that HPS-HA may be effective in protecting against oxidative diseases.

  • PDF

Enhancement of Skin Antioxidant and Anti-Inflammatory Potentials of Agastache rugosa Leaf Extract by Probiotic Bacterial Fermentation in Human Epidermal Keratinocytes (프로바이오틱 유산균 발효에 의한 배초향 잎 추출물의 피부 항산화 및 항염증 활성 증대)

  • Lim, Hye-Won;Lee, Yoonjin;Huang, Yu-Hua;Yoon, Ji-Young;Lee, Su Hee;Kim, Kyunghoon;Lim, Chang-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This study aimed to investigate the effects of probiotic fermentation by comparing the skin antioxidant and anti-inflammatory properties of non-fermented (ARE) and fermented (ARE-F) hot water extracts of Agastache rugosa leaves. ARE-F was obtained via ARE fermentation using Lactobacillus rhamnosus HK-9. In vitro, anti-inflammatory properties were evaluated by analyzing the levels of nitric oxide (NO), reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated HaCaT keratinocytes. In vitro antiradical activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Attenuation of LPS-stimulated NO (p < 0.01), ROS (p < 0.001) and iNOS (p < 0.05) levels by ARE-F was significantly stronger than that by ARE in HaCaT keratinocytes. However, no differences were observed between the DPPH radical scavenging activities of ARE and ARE-F. ARE-F possesses enhanced skin antioxidant and anti-inflammatory properties, suggesting that probiotic bacterial fermentation can be considered an effective tool for augmenting some pharmacological properties of A. rugosa leaves. In brief, the skin antioxidant and anti-inflammatory potentials of A. rugosa leaf extract are augmented by the fermentation with L. rhamnosus HK-9, a probiotic bacterium.

Radiolytic and Antioxidative Characteristics of Phytic Acid by Gamma Irradiation (방사선 조사에 의한 Phytic Acid의 분해특성 및 항산화 활성)

  • Park, Hee-Ra;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1252-1256
    • /
    • 2004
  • Radiolytic characteristics of phytic acid by gamma irradiation were investigated, and the antioxidative activity between irradiated phytic acid and commonly used antioxidants including ascorbic acid, tocopherol and butylated hydroxyl anisole (BHA) was evaluated. Phytic acid sodium salt dissolved in a deionized distilled water was irradiated at 0, 5, 10, 15 and 20 kGy. It was found that the level of irradiation had an effects on the degree of degradation. After irradiation, stable DPPH radical scavenging capacity of phytic acid was newly observed, and it was significantly increased by dose-dependent manners (p<0.05). Antioxidant activity of phytic acid in the oil models was higher than that of the other antioxidant during storage, and phytic acid (400 $\mu\textrm{g}$/mL) irradiated at 20 kGy especially showed the highest antioxidative ability among the antioxidants tested during 3 weeks. Results indicated that irradiation induced the radiolysis of phytic acid in an aqueous model system, and the antiradical and antioxidative activities of irradiated phytic acid increased.

Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish

  • Wang, Lei;Ryu, BoMi;Kim, Won-Suk;Kim, Gwang Hoon;Jeon, You-Jin
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.379-388
    • /
    • 2017
  • In the present study, we enhanced the phenolic content of 70% ethanol extracts of Spirogyra sp. (SPE, $260.47{\pm}5.21$ gallic acid equivalent $[GAE]mg\;g^{-1}$), 2.97 times to $774.24{\pm}2.61GAE\;mg\;g^{-1}$ in the ethyl acetate fraction of SPE (SPEE). SPEE was evaluated for its antiradical activity in online high-performance liquid chromatography-ABTS analysis, and the peaks with the highest antiradical activities were identified as gallic acid derivatives containing gallic acid, methyl gallate, and ethyl gallate. Isolation of ethyl gallate from Spirogyra sp. was performed for the first time in this study. In ultraviolet B (UVB)-irradiated keratinocytes (HaCaT cells), SPEE improved cell viability by 8.22%, and 23.33% and reduced accumulation of cells in the sub-$G_1$ phase by 20.53%, and 32.11% at the concentrations of 50 and $100{\mu}g\;mL^{-1}$, respectively. Furthermore, SPEE (50 and $100{\mu}g\;mL^{-1}$) reduced reactive oxygen species generation in UVB-irradiated zebrafish by 66.67% and 77.78%. This study suggests a protective activity of gallic acid and its derivatives from Spirogyra sp. against UVB-induced stress responses in both in vitro and in vivo models, suggesting a potential use of SPEE in photoprotection.

Comparison of Nanopowdered and Powdered Peanut Sprout-Added Yogurt on its Physicochemical and Sensory Properties during Storage

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.553-560
    • /
    • 2012
  • This study was conducted to compare the physicochemical and sensory properties of yogurt containing nanopowdered peanut sprouts (NPPS) and powdered peanut sprouts (PPS) at different concentrations (0.05-0.20%, w/v) during storage at $4^{\circ}C$ for 16 d. The pH values of NPPS (0.05-0.20%, w/v)-added yogurt were lower than those of PPS-added yogurt. The antiradical scavenging activity and LAB counts were significantly higher in NPPS-added yogurt than in PPS-added yogurt during the storage period of 16 d (p<0.05). Higher concentrations (0.15, and 0.20%) NPPS-added yogurt showed greater antiradical scavenging activity. The LAB counts were ranged from $9.00{\times}10^8$ to $1.10{\times}10^9$ and $1.30{\times}10^9$ to $9.10{\times}10^8$ CFU/mL in 0.05% and 0.20% NPPS-added yogurts, respectively. In sensory testing, 0.05 and 0.10% NPPS-added yogurt showed similar results to the control in whey-off, grainy texture, and overall acceptability. Yellowness and astringent scores increased with increasing addition of NPPS or PPS to the yogurt irrespective of its storage times. Peanut and beany flavors were lower during the storage for 0.05 and 0.10% NPPS-added yogurt. Based on the data obtained from the present study, it was concluded that 0.05 and 0.10%, w/v of NPPS could be used to produce NPPS-added yogurt without significant adverse effects on the physicochemical and sensory properties, but with an enhanced functional value added to the yogurt.

Antimicrobial and Antiradical Activity of Nepalese Medicinal Plants

  • Bhatt, Lok Ranjan;Lim, Jin-A;Lim, Chi-Hwan;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1564-1568
    • /
    • 2007
  • In this study fourteen ethanol extracts from Nepalese medicinal plants were screened for their in vitro antimicrobial and antiradical activity and their total phenolic content was evaluated. The antiradicalactivity was evaluated by free radical scavenging assay, using 2,2-diphenyl-1-picryl hydrazyl radical (DPPH). Plant extracts showed a wide range of radical scavenging activity, with $IC_50$ value ranging in between $5.38\; {\mu}g/\;mL$ - $429.61\;{\mu}g/mL$. Strong radical scavenging activity was shown by flower extract of Woodfordia fruticosa ($5.38\;{\mu}g/\;mL$) and stem bark extract of Azadirachta indica ($5.58 {\mu}g/\;mL$)that also contained high phenolic content. Most of the sample showed activity below the concentration of $100\; {\mu}g/mL$. For antimicrobial activity three test microorganisms namely Staphylococcus aureus, Streptococcus epidermidis, and Candida albicans were used. The minimum inhibitory concentration (MIC) of the plant extracts was determined. Most of the plant extracts were effective against bacterial strains only at higher concentration ($800\;-\;1,600\;{\mu}g/mL$) but none of these were effective against Candida albicans below $1,600\;{\mu}g/mL$.

Antioxidant Activity-of Curcuma Longa L., Novel Foodstuff

  • Choi, Hae-Yeon
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2009
  • The potential antioxidant activities of different fractions from methanolic extract of Curcuma longa L. were assayed in vitro. All of the fractions exception of n-hexane and $H_2O$ showed a strong antioxidant activity, especially the ethylacetate (EtOAc) fraction, which showed the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity ($IC_{50}=9.86\;{\mu}g/mL$). The results of 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP) assay showed concentration dependency, the EtOAc fraction demonstrating a better result than the other fractions at the same concentration in this studies. Additionally, when the total phenolic contents of fractions were measured, the EtOAc fraction contained the highest level. Meanwhile, correlation analysis indicated a high correlation between the antiradical activity and the total phenolic contents, suggesting that fractions obtained from the methanolic extract of Curcuma longa L. have wide potential for use as sources of antioxidant material.