• Title/Summary/Keyword: antioxidants

Search Result 1,802, Processing Time 0.033 seconds

The co-injection of antioxidants with foot-and-mouth disease vaccination altered growth performance and blood parameters of finishing Holstein steers

  • Seo, Jakyeom;Song, Minho;Jo, Namchul;Kim, Woonsu;Jeong, Sinyong;Kim, Jongnam;Lee, Seyoung;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.792-799
    • /
    • 2019
  • Objective: This study was conducted to evaluate whether the co-injection of antioxidants together with foot-and-mouth disease (FMD) vaccination has the potential to attenuate the negative effects caused by vaccination in Holstein finishing steers. Methods: A total of 36 finishing Holstein steers (body weight [BW]: $608{\pm}45.6kg$, 17 months old) were randomly allocated to one of three treatments: i) control (CON, only FMD vaccination without any co-injection), ii) co-injection of commercial non-steroidal anti-inflammatory drugs (NSAID) with FMD vaccination at a ratio of 10:1 (NSAID vol/FMD vaccine vol) as a positive control (PCON), iii) co-injection of commercial mixture of vitamin E and selenium with FMD vaccination (VITESEL) (1 mL of FMD vaccine+1 mL of antioxidants per 90 kg of BW). Changes in growth performance and blood parameters because of treatments were determined. Results: No significant difference in BW, average daily gain, and dry matter intake of the steers was observed among the treatments. The FMD vaccination significantly increased white blood cells (WBC), neutrophils, platelets, and mean platelet volume (p<0.01) in blood analysis. The count of lymphocyte tended to increase after vaccination (p = 0.08). In blood analysis, steers in VITESEL tended to have higher numbers of WBC, neutrophils, and platelets compared to that of other treatments (p = 0.09, 0.06, and 0.09, respectively). Eosinophils in VITESEL were higher than those in PCON (p<0.01). Among blood metabolites, blood urea nitrogen and aspartate transaminase were significantly increased, but cholesterol, alanine transferase, inorganic phosphorus, Mg, and albumin were decreased after FMD vaccination (p<0.01). Conclusion: The use of antioxidants in FMD vaccination did not attenuate growth disturbance because of FMD vaccination. The metabolic changes induced by vaccination were not controlled by the administration of antioxidants. The protective function of antioxidants was effective mainly on the cell counts of leukocytes.

Study on the Antithiamin Activities of Synthetic Antioxidants (합성항산화제 항Thiamin성에 대한 연구)

  • 한명규
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.310-314
    • /
    • 1997
  • Antithiamin activities of BHA, BHT, PG and TBHQ of synthetic antioxidants on the effect of temperature and pH was determined by means of HPLC. The influence of synthetic antioxidants on the degration of thiamin was found to be dependent on temperature and pH. The degradation of thiamin was considerably more rapid at pH 7 than pH 4. The influence on the heat of synthetic antioxidants at pH 4 and 38* was extremely slight, but the degradation of thiamin at pH 7 was much more rapid at 60* than at 38*. After 24 hours of incubation both PG and TBHQ at pH 7 and 60* nearly completely destroyed thiamin. Tests of antithiamin activities showed that TBHQ, which was decomposed completely in 72 hours, was more effective than PG at pH 7 and 38* but BHA and BHT hardly had antithiamin activities which was evaluated under various reactions of pH and temperature. Thiamin degradation, at pH 7 and 6$0^{\circ}C$, was proportional to the concentration of PG. When the ratio of PG to thiamin was increased from 0.15:1 to 2:1, the degradation rate also increased. However, the change between ratio of 1:1 and 2:1 was negligible.

  • PDF

Effect of Myricetin Combined with Vitamin C or Vitamin E on Antioxidant Enzyme System in Murine Melanoma Cells (B16F10 세포에서 Flavonoid인 Myricetin과 Vitamine C, Vitamine E의 병용 투여가 항산화 효소계에 미치는 영향)

  • Yu, Ji-Sun;Kim, An-Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.357-363
    • /
    • 2004
  • Flavonoids are class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including antiviral, antithrombotic, antiiflammatory, antihistaminic, antioxidant and free-radical scavenging abilities. To determined flavonoid, myricetin in the presence of other antioxidants - vitamin C and vitamin E - can exert antioxidative properties not only directly by modulating the AOE system but also scavenging free radical, we investigated cell viability, antioxidant enzyme activities and ROS level in B16F10 murine melanoma cell. B16F10 cells were exposed to medium containing myricetin in the presence or absence of vitamin C or vitamin E for a period of 24 hr. Cell viability was measured by MTT assay. In co-treating myricetin with other antioxidants, CAT activities were increased, compared with control, but SOD and GPx activities were decreased, compared with each antioxidant treated groups . In the group of myricetin or myricetin present with other antioxidants, ROS levels were decreased dose-dependently. Especially, myricetin present of other antioxidants were decreased compared with myricetin.

A selective Assay To Measure Antioxidant Capacity in Both The Aqueous and Lipid Compartments of Plasma

  • Giancarlo Aldini;Yeum, Kyung-Jin;Robert. M. Russel;Norman I. Krinsky
    • Nutritional Sciences
    • /
    • v.6 no.1
    • /
    • pp.12-19
    • /
    • 2003
  • The measurement of the total antioxidant capacity (TAC) of human plasma has been widely applied in nutritional science, for example to evaluate the antioxidant contribution of dietary components and to study, although indirectly, the bioavailability of dietary antioxidants. Several methods have been proposed for the measurement of TAC, most of them based on the ability of plasma to withstand the oxidative damage induced by aqueous radicals. Although plasma contains both hydrophilic and lipophilic antioxidants that interact through extensive cross-talk in most of the methods employed for the TAC measurement, the hydrophilic antioxidants such as ascorbic acid, uric acid, and protein thiols mainly contribute to the total antioxidant plasma capacity (almost 70%) while lipophilic antioxidants embedded in the lipoproteins (carotenoids, a-tocopherol, ubiquino1-10) participate only in a negligible amount (less than 5%). The present paper reviews the analytical methods used to assess the TAC and in particular focuses on new approaches that are capable of distinguishing the antioxidant capacity of both the aqueous and lipid compartments of plasma. The general principle of the method as well as some in vitro and ex vivo applications will be discussed within the text.

Use of Antioxidants to Prevent Cyclosporine A Toxicity

  • Lee, Jin-Hwa
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • Cyclosporine A (CsA) is a potent immunosuppressor that is widely used in transplant surgery and the treatment of several autoimmune diseases. However, major side effects of CsA such as nephrotoxicity, hepatotoxicity, neurotoxicity and cardiovascular diseases have substantially limited its usage. Although molecular mechanisms underlying these adverse effects are not clearly understood, there is some evidence that suggests involvement of reactive oxygen species (ROS). In parallel, protective effects of various antioxidants have been demonstrated by many research groups. Extensive studies of CsA-induced nephrotoxcity have confirmed that the antioxidants can restore the damaged function and structure of kidney. Subsequently, there have appeared numerous reports to demonstrate the positive antioxidant effects on liver and other organ damages by CsA. It may be timely to review the ideas to envisage the relationship between ROS and the CsA-induced toxicity. This review is comprised of a brief description of the immunosuppressive action and the secondary effects of CsA, and a synopsis of reports regarding the antioxidant treatments against the ROS-linked CsA toxicity. A plethora of recent reports suggest that antioxidants can help reduce many CsA's adverse effects and therefore might help develop more effective CsA treatment regimens.

Effects of Small Molecular Antioxidants on Cerulein-induced Acute Pancreatitis in Rat

  • Choi, Joo-Young;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.629-635
    • /
    • 1998
  • It has been suggested that oxygen free radicals are involved in the initiation process of acute pancreatitis, although its pathogenesis is not clear. This study evaluates the roles of oxygen radicals and the effects of small molecular antioxidants (rebamipide, N-acetyl-cysteine, allopurinol, ${\beta}-carotene)$ on the development of cerulein-induced acute pancreatitis. Acute edematous pancreatitis was induced by the intravenous infusion of cerulein at supramaximal dose of 10 ${\mu}g/kg/hour$ for 3.5 hours. The effects of antioxidants, rebamipide (100 mg/kg, i.p.), N-acetyl-cysteine (200 mg/kg, i.v.), allopurinol (20 mg/kg/hour), ${\beta}-carotene$ (50 mg/kg, i.p.), were examined. Cerulein administration resulted in a significant increase in serum amylase activity and pancreatic malondialdehyde (MDA), but not glutathione peroxidase (GSHpx). The glutathione (GSH) content in pancreatic tissue decreased dramatically. Pretreatment of N-acetyl-cysteine significantly decreased the cerulein-induced hyperamylasemia and maintained GSH content in pancreas, but MDA was slightly decreased. In addition, N-acetyl-cysteine ameliorated histological damage. Allopurinol and ${\beta}-carotene$ attenuated cerulein-induced hyperamylasemia, but histologically there was no difference from control. These results indicate that oxygen free radicals play an important role in the initiation of experimental acute pancreatitis. N-acetyl-cysteine is an effective antioxidant that ameliorates the cerulein-induced acute pancreatitis, and the possible therapeutic application of antioxidants against acute pancreatitis needs a further evaluation.

  • PDF

Antioxidants ofnew compounds from marine Algae prevent celldeath of endothelial cells

  • Lee, Ji Yoen;Lee, Mi Hwa;Park, Hae-Ryoun;Choi, Jae Soo;Seo, Hong Suk;An, Won Gun;Choi, Won Chul
    • Journal of fish pathology
    • /
    • v.16 no.1
    • /
    • pp.39-49
    • /
    • 2003
  • Cytosolic oxidation by 4-hydroxy-2-nonenal (4HNE) and tert-butyl hydroperoxide (t-BHP) results in cell death of bovine aortic endothelial cells (BAEC). In this study, we have investigated the roles of antioxidants such as 2,3,6-tribromo-4,5-dihydroxy benzyl methyl ether (TDB) and phloroglucinol in preventing cell death. After treatment with oxidants for 6h, cells became compact and showed nuclear condensation, which were characteristics of early apoptosis. After l2h treatment, morphologic features including severe cytoplasm condensation, membrane blebbing, and apoptotic bodies were prominent and these findings were interpreted as characteristics of late-apoptosis. When the apoptotic cells were treated with antioxidants for 12h, both early and late apoptotic cells did show no significant change. After oxidant treated cells were incubated with antioxidant for 24h, the characteristics of early-apoptosis were eliminated but cells in lateapoptosis could not return to normal cells. These results suggest that TDB and phloroglucinol prevent the cells from dying through apoptosis induced by 4HNE and t-BHP in early stage.

Taurine Possesses In vitro Antimutagenic Activity Comparable to Major Antioxidants

  • Sung, Mi-Kyung;Jeon, Hye-Seung;Park, Taesun
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.43-46
    • /
    • 1999
  • Taurine is known to suppress oxidant-induced tissue injury by stabilizing biomembrane and scavanging free radicals. The purpose of this study was to determne the antioxidative and antimutabenic acitvities of taurine, ad to compare those acitivities with major antioxidants. For the measurement of antioxidative capacity, 0.05 , 0.1,0.5 and 1.0mg/ml of taurine, L-Ascorbic acid, alpha-tocopherol, and BHT (dibuty hydroxiy toluene)were prepared and tested for their ability to donate electrons to DPPH (1,1-diphenyl-2-picryl-hydrazyl). Antimutagenic acitivity was examined using the Ames salmonela test system at concentrations of 600, 900 and 1200ug/ml. Results indicated that taurine possesses electron-donating capacity, however, the degree of donation was very weak compared to the major antioxidants tested. However, taurine was evaluated as a potent mutation suppressor. Antimutagenic capacity was in increasing order BHT>taurine>L-ascorbic acid>alpha-tocopherol at concentrations of 600 and 900ug/ml. There was a dose-dependent increase in antimutabenicity of these compounds , however, antimutagenity of the 900ug taurie/plate was not significantly differently from that of 1200ug taurine/plate. These results indicate that taurine effectively suppresses the mutagenicity of AFB1 without noticeable elelctron donating ability.

  • PDF

Control of Root Rot and Wilt Diseases of Roselle under Field Conditions

  • Hassan, Naglaa;Elsharkawy, Mohsen Mohamed;Shimizu, Masafumi;Hyakumachi, Mitsuro
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.376-384
    • /
    • 2014
  • Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle.

Antioxidant and Bioactive Films to Enhance Food Quality and Phytochemical Production during Ripening

  • Min Byungjin;Dawson Paul L.;Shetty Kalidas
    • Food Science of Animal Resources
    • /
    • v.25 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • Antioxidant films are one active packaging technology that can extend food shelf-life through preventing lipid oxidation, stabilizing color, maintaining sensory properties and delaying microbial growth in foods. Because raw, fresh and minimal processed foods are more perishable during storage or under display conditions than further processed foods, they rapidly lose their original quality. Foods are susceptible to physical, chemical, and biochemical hazards to which packaging films can be effective barriers. Although films incorporated natural (tocopherols, flavonoids and phenolic acids) or synthetic antioxidants (BHT, BHA, TBHQ, propyl gallate) have been extensively tested to improve quality and safety of various foods, food applications require addressing issues such as physical properties, chemical action, cost, and legal approval. Increased interest in natural antioxidants as substitutes for synthetic antioxidants has triggered research on use of the new natural antioxidants in films and coatings. Use of new components (phytochemicals) as film additives can improve food quality and human health. The biosynthesis of plant phenolics can potentially be optimized by active coatings on harvested fruits and vegetables. These coatings can trigger the plants natural proline-linked pentose phosphate pathway to increase the phenolic contents and maintain overall plant tissue quality. This alternate metabolic pathway has been proposed by Dr. K. Shetty and is supported by numerous studies. A new generation of active food films will not only preserve the food, but increase food's nutritional quality by optimizing raw food biochemical production of phytochemicals.