• 제목/요약/키워드: antioxidant gene expression

검색결과 353건 처리시간 0.03초

Anti-aging Effect and Gene Expression Profiling of Aged Rats Treated with G. bimaculatus Extract

  • Ahn, Mi Young;Hwang, Jae Sam;Yun, Eun Young;Kim, Min-Ji;Park, Kun-Koo
    • Toxicological Research
    • /
    • 제31권2호
    • /
    • pp.173-180
    • /
    • 2015
  • Extract from Gryllus bimaculatus crickets inhibits oxidation at the DNA level, with reduced production of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Microarray analyses were performed with a rat 28K cDNA clone set array to identify the gene expression profiles of aged (10 months old) Wistar Kyoto rats treated for one month with 100 mg/kg G. bimaculatus ethanol extract to assess the effects. The extract produced a meaningful anti-edema effect, evident by the inhibition of creatinine phosphokinase activity. The weights of abdominal and ovarian adipose tissues were reduced and the proportion of unsaturated fatty acids in adipose tissues was increased in an extract dose-dependent manner. Compared with untreated control rats, rats treated with the extract displayed the upregulation of 1053 genes including Fas (tumor necrosis factor receptor superfamily, member 6), Amigo3 (adhesion molecule with an immunoglobulin-like domain), Reticulon 4, 3-hydroxy-3-methylglutaryl-coenzyme (Hmgcr; a reductase), related anti-fatigue (enzyme metabolism), and Rtn antioxidant, and the downregulation of 73 genes including Ugt2b (UDP glycosyltransferase 2 family), Early growth response 1, and Glycoprotein m6a. Data suggest that G. bimaculatus extract may have value in lessening the effects of aging, resulting in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes.

NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity

  • Park, Se Ra;Jung, Ju Young;Kim, Young-Jung;Jung, Da Young;Lee, Mee Young;Ryu, Si Yun
    • 대한수의학회지
    • /
    • 제56권1호
    • /
    • pp.15-21
    • /
    • 2016
  • NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin ($20{\mu}M$) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-tonuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.

Effects of Alpha-G Rutin Supplementation in Sperm Freezing Extender on Dog Sperm Cryopreservation

  • Park, Sang-Hyoun;Jeon, Yubyeol;Talha, Nabeel Abdelbagi Hamad;Yu, Il-Jeoung
    • 한국임상수의학회지
    • /
    • 제36권5호
    • /
    • pp.259-265
    • /
    • 2019
  • This study was designed to investigate the effects of alpha-glucosyl rutin (G-rutin) and its comparative effects with other antioxidants (glutathione: GSH, catalase: CATA and beta-mercaptoethanol : ${\beta}ME$) on dog sperm freezing. In the first experiment (E1), the spermatozoa were diluted in freezing extender supplemented with 0 (control), 0.001, 0.01, or 0.1% G-rutin and frozen using liquid nitrogen ($LN_2$). The progressive motility, reactive oxygen species (ROS) level and apoptosis of spermatozoa were assessed after sperm thawing at $37^{\circ}C$ for 25 sec. In the second experiment (E2), 0.1% G-rutin group was compared with 10 mM ${\beta}-ME$, $5{\mu}M$ GSH and $50{\mu}M$ CATA groups by assaying progressive motility, viability and gene expression of Bcl-2 and SMCP after sperm freezing and thawing. In E1, 0.1% G-rutin group showed higher (P < 0.05) post-thaw progressive motility and lower (P < 0.05) ROS levels. In E2, the expressions of SMCP in G-rutin group were higher (P < 0.05) than in CATA group while Bcl-2 expression of G-rutin group was higher (P < 0.05) than ${\beta}-ME$ and CATA groups. However, there were no significant differences in progressive motility and viability. Therefore, we suggest that G-rutin can be used as a potentially antioxidative supplement in dog sperm freezing extender on the basis of gene expression related to motility and apoptosis as well as ROS level.

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.

miR-340 Reverses Cisplatin Resistance of Hepatocellular Carcinoma Cell Lines by Targeting Nrf2-dependent Antioxidant Pathway

  • Shi, Liang;Chen, Zhan-Guo;Wu, Li-li;Zheng, Jian-Jian;Yang, Jian-Rong;Chen, Xiao-Fei;Chen, Zeng-Qiang;Liu, Cun-Li;Chi, Sheng-Ying;Zheng, Jia-Ying;Huang, Hai-Xia;Lin, Xiang-Yang;Zheng, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10439-10444
    • /
    • 2015
  • Many chemotherapeutic agents have been successfully used to treat hepatocellular carcinoma (HCC); however, the development of chemoresistance in liver cancer cells usually results in a relapse and worsening of prognosis. It has been demonstrated that DNA methylation and histone modification play crucial roles in chemotherapy resistance. Currently, extensive research has shown that there is another potential mechanism of gene expression control, which is mediated through the function of short noncoding RNAs, especially for microRNAs (miRNAs), but little is known about their roles in cancer cell drug resistance. In present study, by taking advantage of miRNA effects on the resistance of human hepatocellular carcinoma cells line to cisplatin, it has been demonstrated that miR-340 were significantly downregulated whereas Nrf2 was upregulated in HepG2/CDDP (cisplatin) cells, compared with parental HepG2 cells. Bioinformatics analysis and luciferase assays of Nrf2-3'-untranslated region-based reporter constructor indicated that Nrf2 was the direct target gene of miR-340, miR-340 mimics suppressing Nrf2-dependent antioxidant pathway and enhancing the sensitivity of HepG2/CDDP cells to cisplatin. Interestingly, transfection with miR-340 mimics combined with miR-340 inhibitors reactivated the Nrf2 related pathway and restored the resistance of HepG2/CDDP cells to CDDP. Collectively, the results first suggested that lower expression of miR-340 is involved in the development of CDDP resistance in hepatocellular carcinoma cell line, at least partly due to regulating Nrf2-dependent antioxidant pathway.

Effects of Methyltestosterone and Flutanide on Phospholipid Hydroperoxide Glutathione Peroxidase Gene Expression in the Reproductive System of Male Mice

  • Kang, Min-Joung;Nam, Sang-Yoon;Kwon, Young-Bang;Kang, Jong-Koo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.161-161
    • /
    • 2001
  • Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an antioxidant selenoenzyme which interacts directly with and diminishes peroxidized phospholipids, cholesterol and cholesteryl ester in tissues. PHGPx activity appears in most tissues, but is especially high in testis. In testis, PHGPx level decreases in hypophysectomized rats but is partially restored after gonadotropin treament.(omitted)

  • PDF

Effect of Ascorbic Acid on the Activity and Gene Expression of Cytochrome P450 in Sepsis

  • Kim, Joo-Young;Park, Sang-Woo;Lee, Sun-Mee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.127.2-128
    • /
    • 2003
  • Sepsis remains common surgical problems with high morbidity and mortality despite improvement in the management for septic patient. Although hepatocellular dysfunction occurs during sepsis, the mechanism responsible for this remains unclear. In sepsis, a state of severe oxidative stress is encountered, with host endogenous antioxidant defenses overcome. Therefore, the aim of this study was to determine whether specific abnormality exists in cytochrome P450 (CYP)-mediated metabolizing function associated with polymicrobial sepsis and whether role of ascorbic acid (AA) in the alterations during sepsis. (omitted)

  • PDF

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • 제21권3호
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase $(AMPK){\alpha}$ and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and $AMPK{\alpha}$ abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or $AMPK{\alpha}/Nrf2$ pathway in HaCaT cells.

해백청혈플러스(AMCP)의 항산화 및 항염증 작용을 통한 죽상동맥경화 억제 효과 (Effects of Antioxidant and Anti-inflammatory Activity of Allii Macrostemonis Bulbus Cheonghyeol Plus on the Inhibition of Atherosclerosis)

  • 채인철;유주영;유호룡;김윤식;설인찬
    • 동의생리병리학회지
    • /
    • 제34권3호
    • /
    • pp.126-135
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant, anti-inflammatory and anti-cellular adhesion molecules effects of Allii Macrostemonis Bulbus, Artemisiae Capillaris Herba, Curcumae Radix, Crataegi Fructus, Salviae Militiorrhizae Radix complex extract(AMCP) on the inhibition of atherosclerosis in HUVEC. We measured DPPH radical scavenging activity and ABTS radical scavenging activity of AMCP to evaluate its antioxidant effect. And we also measured the expression level of NF-κB, IκBα, ERK, JNK, p38 proteins to evaluate its anti-inflammatory effect. Lastly, we measured the expression level of MCP-1, ICAM-1, VCAM-1 mRNA and their level to evaluate its anti-celluar adhesion molecules. AMCP did not show any cytotoxicity in HUVEC within the concentraion tested except for a concentration of 400 ㎍/㎖. AMCP increased the DPPH radical scavenging activitiy and ABTS radical scavenging activity in HUVEC as the concentration of AMCP rises. AMCP significantly reduced NF-κB, IκBα, JNK, ERK and p38 protein expression in HUVEC compared to control group. AMCP significantly reduced MCP-1, ICAM-1, VCAM-1 gene expresion in HUVEC compared to control group. AMCP significantly decreased the levels of MCP-1, ICAM-1, VCAM-1 in HUVEC compared to control group. These results suggest that AMCP has effects on antioxidation, anti-inflammation and anti-cellular adhesion molecule, which helps the treatment and prevention of dyslipidemia and atherosclerosis.

Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy

  • Choi, Wooram;Kim, Hyun Soo;Park, Sang Hee;Kim, Donghyun;Hong, Yong Deog;Kim, Ji Hye;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.536-542
    • /
    • 2022
  • Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 ㎍/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 ㎍/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.