• 제목/요약/키워드: antioxidant action

검색결과 344건 처리시간 0.025초

Antioxidant Activity of Salad Vegetables Grown in Korea

  • Xin Zao;Song, Kyung-Bin;Kim, Mee-Ree
    • Preventive Nutrition and Food Science
    • /
    • 제9권4호
    • /
    • pp.289-294
    • /
    • 2004
  • The antioxidant activity of forty two kinds of salad vegetables grown in Korea was evaluated. Methanol extract of freeze-dried vegetable was assayed by radical scavenging activity using 1,2-diphenyl-2-picrylhydrazyl (DPPH) and Fe^{2+}$-catalyzed lipid peroxidation inhibition by TBA method. Total phenolics were determined colorimetrically using Folin-Ciocalteu reagent. The highest radical scavenging activity was expressed by perilla leaf, followed by dandelion leaf, red and green leafy lettuce, of which $IC_{50}$ was less than 0.10 mg/mL. Angelica leaf showed the highest inhibitory action for lipid peroxidation with $95\%$, and then dandelion leaf, water spinach, and perilla leaf inhibited over $80\%$. However, lettuce (Iceberg) and young Chinese cabbage exhibited the lowest antioxidant activity based on both assay methods. Highly positive correlations between antioxidative activities and total phenolics were observed (p < 0.001). The results suggested that salad vegetables, especially perilla leaf, leafy lettuce, dandelion or angelica, could be used for easily accessible sources of natural antioxidants.

Celecoxib의 항산화 작용에 따른 성체 치주인대 줄기세포 사멸억제 (Inhibition of Human Periodontal Stem Cell Death Following the Antioxidant Action of Celecoxib)

  • 이경희
    • 대한통합의학회지
    • /
    • 제11권2호
    • /
    • pp.169-179
    • /
    • 2023
  • Purpose : Although human periodontal ligament stem cells (hPDLSCs) are a supportive factor for tissue engineering, oxidative stress during cell culture and transplantation has been shown to affect stem cell viability and mortality, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects against cell damage of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and the antioxidant signal of hPDLSCs in H2O2-induced oxidative stress. Methods : To induce oxidative stress in cultured hPDLSCs, H2O2 was used as an exogenous reactive oxygen species (ROS). Dose-dependent celecoxib (.1, 1, 10, or 100 µM) was administered after H2O2 treatment. WST-1 assay was used to assess cell damage and western blot was used to observe antioxidant activity of hPDLSCs in oxidative stress. Immunohistochemistry was performed for inverting the localization of the SOD and Nrf2 antibody. Results : We found that progressive cell death was induced in hPDLSCs by H2O2 treatment. However, low-dose celecoxib reduced H2O2-induced cellular damage and eventually enhanced the SOD activity and Nrf2 signal of hPDLSCs. Oxidative stress-induced morphological change in hPDLSCs included lowered the survival and number of spindle-shaped cells, and shrinkage and shortening of cell fibers. Notably, celecoxib promoted cell survival function and activated antioxidants such as SOD and Nrf2 by positively regulating the cell survival signal pathway, and also reduced the number of morphological changes in hPDLS. Immunohistochemistry results showed a greater number of SOD- and Nrf2-stained cells in the celecoxib-treated group following oxidative stress. Conclusion : By increasing SOD and Nrf2 expression at the antioxidant system, the findings suggest that celecoxib enhanced the antioxidative ability of hPDLSCs and protected cell viability against H2O2-induced oxidative stress by increasing SOD and Nrf2 expression in the antioxidant system.

사염화탄소 및 에탄올에 의해 유도된 만성간 손상에 미치는 말로틸레이트의 항산화 작용 (Antioxidant Action of Malotilate on Prolonged Hepatic Injury Induced by Carbon Tetrachloride Alone or in Combination with Ethanol in Rat)

  • 김형춘;허인회
    • 약학회지
    • /
    • 제34권4호
    • /
    • pp.267-276
    • /
    • 1990
  • To achieve a better understanding of antioxidant action manifested by malotilate, the dithiol malonates, we monitored the oxy radical-scavenging system against the chronic hepatic damage induced by $CCl_4$ alone or in combination with ethanol. Malotilate was given orally at a dose of 100 mg/kg/day and $CCl_4$ 1.5 ml/kg was injected subcutaneously twice a week for 4 weeks. In each group receiving ethanol, drinking water was replaced by 20% aqueous solution or glucose, isocaloric amounts of ethanol, as a control of ethanol was diluted in its drinking water. Each rat was killed as a starved state at 18 hours after the period of the experiment, four weeks. The results were summarized as follows: 1) Malotilate inhibited the rate of generation of superoxide radicals, the accumulation of lipoperoxides, and promoted the synthesis of glutathione in the liver. 2) Malotilate stimulated the enhancement of activity of superoxide dismutase in hepatic mitochondria. 3) Malotilate had no effects on the hepatic $H_2O_2$ contents. 4) Malotilate showed the increase of catalase activity in the liver poisoned with $CCl_4$, and also gave a tendency to increase it in the liver intoxicated with ethanol. Thus, our data suggested that the activation of hepatic antioxidant system in the presence of malotilate would play a role in protecting liver against the toxic effects of oxy radical and/or lipid peroxides under the hepatotoxic conditions induced by $CCl_4$ with or without ethanol. However, the effects of malotilate against the ethanol-induced hepatotoxicity appear to be insignificant.

  • PDF

진세노사이드 Rd와 사포닌 대사물인 compound K의 항지질과산화 효과 (Anti-lipid Peroxdation Effect of Ginsenoside Rd and Its Metabolite Compound K)

  • 김경현;성금수;문연자;박시준;신미란;장재철
    • 한국전통의학지
    • /
    • 제15권1호
    • /
    • pp.97-105
    • /
    • 2006
  • To study on antioxidant effects in the liver of 40-week-old mouse, the sample were orally pretreated 5mg/kg/day for 5 days with red ginseng saponin components(total saponin, protopanaxadiol saponin, protopanaxatriol saponin, ginsenoside-Rd, ginsenoside-Re, compound-K) for 5 days. The ability of saponin to protect the mouse liver from oxidative damage was examined by determining the activity of superoxide dismutase(SOD), glutathione peroxidase(GPx) and the contents of glutathione, the level of malondialdehyde, The only protopanaxadiol among the ginseng saponin fractions was significantly increased the hepatic SOD activity(p<0.01). The red ginseng saponin induced a slight increase of GPx activity, especially ginsenoside Rd, compound K and protopanaxatriol treatments significantly increased its activity. The content of glutathione was significantly increased by total saponin, protopanaxadiol and ginsenoside Rd(p<0.01), but the oxidized glutathione level was lowered in all the red ginseng saponin. Finally, the level of malondialdehyde was significantly decreased by ginsenoside Rd and protopanaxadiol. In conclusion, protopanaxadiol and ginsenoside Rd among the saponin fraction were especially increased in the activity of hepatic antioxidative enzyme and decreased the lipid peroxidation that was expressed in term of MDA formation. This comprehensive antioxidant effects of red ginseng saponin seems to be by a certain action of saponin other than a direct antioxidant action.

  • PDF

Nrf2-mediated activation of HO-1 is required in the blocking effect of compound K, a ginseng saponin metabolite, against oxidative stress damage in ARPE-19 human retinal pigment epithelial cells

  • Cheol Park;Hee-Jae Cha;Kyoung-Seob Song;Heui-Soo Kim;EunJin Bang;Hyesook Lee;Cheng-Yun Jin;Gi-Young Kim;Yung Hyun Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.311-318
    • /
    • 2023
  • Background: The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods: The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results: H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion: This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.

Candicidal Action of Resveratrol Isolated from Grapes on Human Pathogenic Yeast C. albicans

  • Jung, Hyun-Jun;Seu, Young-Bae;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1324-1329
    • /
    • 2007
  • Resveratrol (3,5,4'-trihydroxystilbene) is a naturally occurring, multi-biofunctional chemical existing in grapes and various other plants as a polyphenol type, and it is one of the best known natural anticancer and antiatherosclerosis reagents. In this study, we investigated the antifungal action by resveratrol in Candida albicans, which is a human infectious fungi as an agent of candidiasis. Resveratrol displayed potent fungicidal activity in an energy-dependent manner, without any hemolytic effects against human erythrocytes. It was found that the serum-induced mycelial forms, which playa crucial role in the pathogenesis of C. albicans during host tissue invasion, were disrupted by resveratrol. To understand the correlation between lethal effects and resveratrol action, we examined the physiological changes of C. albicans. A significant accumulation of intracellular trehalose was induced by stress responses to resveratrol action, and a remarkable arrest of cell-cycle processes at the S-phase in C. albicans occured. Therefore, the fungicidal effects of resveratrol demonstrate that this compound is a potential candidate as an antifungal agent in treating infectious diseases by candidal infections.

살리실산이 오이 잎의 산화적 스트레스와 UV-B 내성에 미치는 영향 (Effects of Salicylic Acid on Oxidative Stress and UV-B Tolerance in Cucumber Leaves)

  • 홍정희;김태윤
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1345-1353
    • /
    • 2007
  • The effect of salicylic acid(SA) on antioxidant system and protective mechanisms against UV-B induced oxidative stress was investigated in cucumber(Cucumis sativus L.) leaves. UV-B radiation and SA were applied separately or in combination to first leaves of cucumber seedlings, and dry matter accumulation, lipid peroxidation and activities of antioxidant enzymes were measured in both dose and time-dependant manner. UV-B exposure showed reduced levels of fresh weight and dry matter production, whereas SA treatment significantly increased them. SA noticeably recovered the UV-B induced inhibition of biomass production. UV-B stress also affected lipid peroxidation and antioxidant enzyme defense system. Malondialdehyde(MDA), a product of lipid peroxidation, was greatly increased under UV-B stress, showing a significant enhancement of a secondary metabolites, which may have antioxidative properties in cucumber leaves exposed to UV-B radiation. Combined application of UV-B and SA caused a moderate increase in lipid peroxidation. These results suggest that SA may mediate protection against oxidative stress. UV-B exposure significantly increased SOD, APX, and GR activity compared with untreated control plants. Those plants treated with 1.0 mM SA showed a similar pattern of changes in activities of antioxidant enzymes. SA-mediated induction of antioxidant enzyme activity may involve a protective accumulation of $H_2O_2$ against UV-B stress. Moreover, their activities were stimulated with a greater increase by UV-B+SA treatment. The UV-B+SA plants always presented higher values than UV-B and SA plants, considering the adverse effects of UV-B on the antioxidant cell system. ABA and JA, second messengers in signaling in response to stresses, showed similar mode of action in UV-B stress, supporting that they may be important in acquired stress tolerance. Based on these results, it can be suggested that SA may participates in the induction of protective mechanisms involved in tolerance to UV-B induced oxidative stress.

Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells

  • Pongkittiphan, Veerachai;Chavasiri, Warinthorn;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5371-5376
    • /
    • 2015
  • Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity ($IC_{50}$ values=$10.7{\pm}1.76$, $55.2{\pm}2.24$, and $87.4{\pm}6.65{\mu}M$, respectively) whereas the $IC_{50}$ value of berberine was higher than $500{\mu}M$. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant ($IC_{50}=72.7{\pm}7.22{\mu}M$) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of $IC_{50}$ value at 7-day treatment stated that B1 < B4 < B2 ($0.44{\pm}0.03$, $2.88{\pm}0.23$, and $6.05{\pm}0.64{\mu}M$, respectively). Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription-polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.

Melanoidin과 시판 항산화제의 항산화작용 비교 및 그 상승효과 (Comparison of the Antioxidant Activity of Melanoidin with Commercial Antioxidants and Their Synergistic Effects)

  • 이문조;김현대;박진우;김동수
    • 한국식품영양과학회지
    • /
    • 제21권6호
    • /
    • pp.686-692
    • /
    • 1992
  • 아미노산의 전하 특성에 따른 Maillard 반응생성물이 항산화성에 미치는 영향을 살펴보기 위하여 amino-carbonyl 반응 화합물과 시판 항산화제의 항산화작용을 비교하고 이들간의 상승작용을 검토하였다. 즉 fructose-amino acid(glycine, histidine, aspartic acid) 모델계를 사용하여 비분획성 melanoidin과 비투석성 melanoidin을 조제하여 이들 모델계의 melanoidin과 항산화제인 BHT, TBHQ, ascorbic acid, ${\alpha}$-tocopherol, lecithin을 각각 linoleic acid에 소정량 첨가하고 $50^{\circ}C$에서 일정기간 저장하여 linoleic acid의 산화 안정성을 비교 검토하였으며 또한 이들을 혼합 사용하였을 경우의 상승효과를 조사한 결과는 다음과 같다. Melanoidin의 항산화성은 비분획성보다 고분자 melanoidin인 비투석성의 경우가 전반적으로 항산화성이 큰 것으로 나타났다. 그리고 아미노산의 종류에 따른 항산화작용에 있어 비분획성의 경우는 glycine과 histidine이 산성아미노산인 aspartic acid를 사용한 경우보다 항산화성이 더 큰 것으로 나타났으녀, 비투석성의 경우는 아미노산의 종류에 따른 차이는 크지 않은 것으로 나타났다. 한편 melanoidin의 농도가 높을수록 항산화 효과는 크게 나타났다. Melanoidin과 항산화제의 항산화성의 비교에 있어서는 비분획성 melanoidin계는 합성 항산화제인 BHT, TBHQ, ascorbic acid보다는 항산화성이 떨어졌으나 천연 항산화제인 ${\alpha}$-tocopherol과 lecithin보다는 항산화성이 우수한 것으로 나타났다. 반면에 비투석성 melanoidin계에 있어서는 합성 항산화제의 항산화성과 거의 동일하게 인정되었으며, 천연 항산화제 보다는 항산화성이 매우 우수한 것으로 나타났다. 항산화제와의 상승효과는 천연 항산화제인 ${\alpha}$-tocopherol과 lecithin에 melanoidin 모델계 6종류를 각각 병용하여 사용한 결과 fructose-aspartic acid계 및 fructose-glycine계 비분획성 melanoidin을 제외한 4종류는 그 상승효과가 매우 큰 것으로 나타났다. 한편 합성 항산화제인 BHT, TBHQ, ascorbic acid와 melanoidin을 병용사용한 경우는 상승효과를 측정하기가 곤란하였는데, 이것은 합성 항산화제만으로도 강력한 항산화 효과를 나타내었기 때문이라 생각한다.

  • PDF

Bioavailability and Efficiency of Ten Catechins as an Antioxidant

  • Shi, John
    • Preventive Nutrition and Food Science
    • /
    • 제7권3호
    • /
    • pp.327-331
    • /
    • 2002
  • Tea is a pleasant, popular and safe beverage in the world. During the past decade, epidemiological studies have shown that tea catechins intake is associated with lower risk of cardiovascular disease. Tea provides a dietary source of health-promoting components to help humans reduce a wide variety of cancer risks and chronic diseases. The antioxidative activity of tea-derived catchins has been extensively studied. The antioxidant effect is a synergistic action between catechins e.g. EGCG, EGC, ECG, EC, pheophytins a and b, and other components in tea leaves, which aye more bioavailable for human body. Green tea has a Higher content of catechins than other kinds of tea. Green tea extract with hot water has high potential and more efficiency to reduce cancer risk than any other tea products or pure EGCG. Protein, iyon, and other food components may interfere with the bioavailability of ten catechins. Interaction of catechins with drug affects the cancer-preventive activity of some cancer-fighting medication. Further studies are required to determine the bioavailability of tea catechins and cancer-preventive functionality.