• 제목/요약/키워드: antinociception

검색결과 85건 처리시간 0.029초

Analgesic Effect of Intrathecal Ginsenosides in a Murine Bone Cancer Pain

  • Yoon, Myung-Ha;Kim, Woong-Mo;Lee, Hyung-Gon;Choi, Jeong-Il;Kim, Yeo-Ok;Song, Ji-A
    • The Korean Journal of Pain
    • /
    • 제23권4호
    • /
    • pp.230-235
    • /
    • 2010
  • Background: Bone cancer pain has a disruptive effect on the cancer patient's quality of life. Although ginsenosides have been used as traditional medicine in Eastern Medicine, the effect on bone cancer pain has not been throughly studied. The aim of this study was to determine whether ginsenosides may alter the bone cancer pain at the spinal level. Methods: NCTC 2472 tumor cells ($2.5{\times}10^5$) were injected into the femur of adult male C3H/HeJ mice to evoke bone tumor and bone cancer pain. To develop bone tumor, radiologic pictures were obtained. To assess pain, the withdrawal thereshold was measured by applying a von Frey filament to the tumor cells inoculation site. The effect of intrathecal ginsenosides was investigated. Effect of ginsenosides (150, 500, $1,000{\mu}g$) was examined at 15, 30, 60, 90, 120 min after intrathecal delivery. Results: The intrafemoral injection of NCTC 2472 tumor cells induced a radiological bone tumor. The withdrawal threshold with tumor development was significantly decreased compared to the sham animals. Intrathecal ginsenosides effectively increased the withdrawal threshold in the bone cancer site. Conclusions: NCTC 2472 tumor cells injection into the mice femur caused bone tumor and bone cancer pain. Intrathecal ginsenosides attenuated the bone cancer-related pain behavior. Therefore, spinal ginsenosides may be an alternative analgesic for treating bone cancer pain.

Therapeutic Effects of Panax ginseng on the Neurotoxicity Induced by Abuse Drugs

  • Oh Ki-Wan
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2005년도 추계학술대회
    • /
    • pp.49-66
    • /
    • 2005
  • Panax ginseng has been useful for the treatment of diverse disease in oriental countries for thousands of years. In addition, a folk medicine prescribed by seven herbal drugs including Panax ginseng has been antinarcotics in the treatment of morphine-dependent patients. Many articles have been reported on these works. Therefore, we review the protective effects of Panax ginseng on the neurotoxicity induced by abuse drugs. Ginseng total saponins (GTS) extracted and isolated by Panax ginseng antagonized Morphine-induced analgesia, and inhibited the development of analgesic tolerance to and physical dependence on morphine. GTS inhibited morphine-6 dehydrogenase, which catalyzes production of mophinone from morphine, and increased hepatic glutathione level responsible to toxicity. Therefore, we hypothesized that these dual actions of ginseng can be associated with the detoxication of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contraction in guinea pig ileum ($\mu$-receptors) and mouse vas deferens($\delta$-receptors) were not mediated through opioid receptors, suggesting non-opioid mechanisms. On the hand, antagonism of U-50,488H ($\kappa$-agonist)-induced antinociception is mediated by serotonergic mechanisms. GTS also inhibited hyperactivity, reverse tolerance (sensitization) and conditioned place preference-induced by psychostimulants such as methamphetamine, cocaine and morphine. On the other hand, GTS reduced the dopamine levels induced by methamphetamine. Moreover, GTS blocked the development of dopamine receptor activation, showing antidopaminergic effect. We suggest that GTS Prevent the methamphetamine-induced striatal dopaminergic neurotoxicity. In addition, Ginsenoside also attenuates morphine-induced cAMP signaling pathway. These results suggested that GTS might be useful for the therapy of the adverse actions of drugs with abuse liability.

  • PDF

다발성 관절염 실험동물 모델에서 저출력 GaAlAs 레이저 자극의 진통효능 및 통증관련 척수내 신경세포의 활성변화에 관한 연구 (The effect of low power GaAlAs laser stimulation on anti-nociception and spinal neuronal activity related to pain sensation in the polyarthritis of rats)

  • 장문경;최영덕;박봉순
    • 대한물리치료과학회지
    • /
    • 제10권1호
    • /
    • pp.180-189
    • /
    • 2003
  • The experiments were designated to evaluate the anti-nociceptive effect of low power laser stimulation on acupoint or non-acupoint using arthrogenic solution induced poly arthritis animal model. Evaluation of potential antinociceptive effect of low power laser on arthritis has employed measurements of the foot bending test, the development of either thermal or mechanical hyperalgesia following the arthritis induction. The analysis of thermal hyperalgesia includes Hargreaves's method. Randall-Sellitto test was utilized for evaluating mechanical hyperalgesia. In addition, the antinociceptive effect of low power laser stimulation on arthritis induced spinal Fos expression was analyzed using a computerized image analysis system. The results were summerized as follows: 1. In laser stimulation on acupoint treated animal, laser stimulation dramatically inhibited the development of pain in foot bending test as compared to those of non acupoint treated animal group and non treated animal group. 2. The threshold of thermal stimulation was significantly increased by low power laser stimulation on acupoint as compared to that of non treated control group. 3. Laser stimulation on acupoint dramatically attenuated the development of mechanical hyperalgesia as compared to that of non treated group. 4. Low power laser stimulation on acupoint significantly suppressed arthritis induced Fos expression in the lumbar spinal cord at 3 week post arthritis induction. In conclusion, the results of the present study demonstrated that low power laser stimulation on acupoint has potent anti-nociceptive effect on arthritis. Additional supporting data for an antinociceptive effect of laser stimulation was obtained using Fos immunohistochemical analysis on spinal cord section. Those data indicated that laser stimulation induced antinociception was mediated by suppression of spinal neuron activity in pain sensation.

  • PDF

A Behavioral Study of Promethazine Interaction with Analgesic Effect of Diclofenac: Pain Combination Therapy

  • Amidi, Niloofar;Izadidastenaei, Zohreh;Araghchian, Malihe;Ahmadimoghaddam, Davoud
    • 대한약침학회지
    • /
    • 제23권1호
    • /
    • pp.18-24
    • /
    • 2020
  • Objectives: Pain is considered as a cause of sickness and the most prevalent symptom which makes people visit a physician. Nowadays, combination therapy is becoming useful to relieve chronic and postsurgical pain. The aim of this study was to study the promethazine (as an antihistamine) interactions with antinociceptive effect of diclofenac (as a non-steroidal anti-inflammatory drugs). Methods: In initial part of the study, we investigate the analgesic effect of diclofenac. Using writhing test, we demonstrate that diclofenac significantly reduces writhe response induced by acetic acid in a dose-dependent manner. In this study, we evaluate the combination effect of promethazine on diclofenac analgesic effect. Results: We observed that diclofenac inhibited pain in the dose dependent manner which means that by increasing dose of diclofenac a significant decrease in pain was observed. This experimental setup allowed calculation of the dose that caused 50% antinociception (ED50) for diclofenac. The ED50 for diclofenac in this study was determined to be 9.1 mg/kg according our previous study. Additionally, promethazine was showed a dose-dependent inhibition of writhes. The combination of different doses of promethazine (2, 4, 6 mg / kg) with diclofenac ED50 (9.1 mg / kg) was injected to mice. Promethazine 4 and 6 mg / kg in combination with diclofenac had significantly led to increase analgesic effect of diclofenac. Conclusion: In conclusion, these results add important information to the existing knowledge on combination of diclofenac and antihistamine in pain therapies to be used in clinical practice and maybe helpful in designing the future guidelines.

Enhancement of Antinociception by Co-administrations of Nefopam, Morphine, and Nimesulide in a Rat Model of Neuropathic Pain

  • Saghaei, Elham;Zanjani, Taraneh Moini;Sabetkasaei, Masoumeh;Naseri, Kobra
    • The Korean Journal of Pain
    • /
    • 제25권1호
    • /
    • pp.7-15
    • /
    • 2012
  • Background: Neuropathic pain is a chronic pain due to disorder in the peripheral or central nervous system with different pathophysiological mechanisms. Current treatments are not effective. Analgesic drugs combined can reduce pain intensity and side effects. Here, we studied the analgesic effect of nimesulide, nefopam, and morphine with different mechanisms of action alone and in combination with other drugs in chronic constriction injury (CCI) model of neuropathic pain. Methods: Male Wistar rats (n = 8) weighing 150-200 g were divided into 3 different groups: 1- Saline-treated CCI group, 2- Saline-treated sham group, and 3- Drug-treated CCI groups. Nimesulide (1.25, 2.5, and 5 mg/kg), nefopam (10, 20, and 30 mg/kg), and morphine (1, 3, and 5 mg/kg) were injected 30 minutes before surgery and continued daily to day 14 post-ligation. In the combination strategy, a nonanalgesic dose of drugs was used in combination such as nefopam + morphine, nefopam + nimesulide, and nimesulide + morphine. Von Frey filaments for mechanical allodynia and acetone test for cold allodynia were, respectively, used as pain behavioral tests. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7,10, and 14 post injury. Results: Nefopam (30 mg/kg) and nimesulide (5 mg/kg) blocked mechanical and thermal allodynia; the analgesic effects of morphine (5 mg/kg) lasted for 7 days. Allodynia was completely inhibited in combination with nonanalgesic doses of nefopam (10 mg/kg), nimesulide (1.25 mg/kg), and morphine (3 mg/kg). Conclusions: It seems that analgesic drugs used in combination, could effectively reduce pain behavior with reduced adverse effects.

Analgesic Effects of Intrathecal Curcumin in the Rat Formalin Test

  • Han, Yong-Ku;Lee, Seong-Heon;Jeong, Hye-Jin;Kim, Min-Sun;Yoon, Myung-Ha;Kim, Woong-Mo
    • The Korean Journal of Pain
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2012
  • Background: Curcumin has been reported to have anti-inflammatory, antioxidant, antiviral, antifungal, antitumor, and antinociceptive activity when administered systemically. We investigated the analgesic efficacy of intrathecal curcumin in a rat model of inflammatory pain. Methods: Male Sprague Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, $50{\mu}l$) into the hind paw. Curcumin doses of 62.5, 125, 250, and $500{\mu}g$were delivered through an intrathecal catheter to examine the flinching responses. The $ED_{50}$ values (half-maximal effective dose) with 95% confidence intervals of curcumin for both phases of the formalin test were calculated from the dose-response lines fitted by least-squares linear regression on a log scale. Results: In rats with intrathecal administration of curcumin, the flinching responses were significantly decreased in both phases. The slope of the regression line was significantly different from zero only in phase 2, and the $ED_{50}$ value (95% confidence interval) of curcumin was $511.4{\mu}g$ (23.5-1126.5). There was no apparent abnormal behavior following the administration of curcumin. Conclusions: Intrathecal administration of curcumin decreased inflammatory pain in rats, and further investigation to elucidate the precise mechanism of spinal action of curcumin is warranted.

Formalin Pretreatment Attenuates Tail-Flick Inhibition Induced by ${\beta}$-Endorphin Administered Intracerebroventricularly or Intrathecally in Mice

  • Han Ki-Jung;Choi Seong-Soo;Shim Eon-Jeong;Seo Young-Jun;Kwon Min-Soo;Lee Jin-Young;Lee Han-Kyu;Suh Hong-Won
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.227-231
    • /
    • 2005
  • We examined the effect of the subcutaneous (s.c.) pretreatment of formalin into both hind paws of mice on the antinociception induced by the intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administration of ${\beta}$-endorphin using the tail-flick test. Pretreatment with formalin ($5\%$) for 5 h had no affect on the i.c.v. administered ${\beta}$-endorphin-induced tail-flick response. However, pretreatment with formalin for 40 h attenuated the tail-flick inhibition induced by i.c.v. administered ${\beta}$-endorphin. This antinociceptive tolerance to i.c.v. ${\beta}$-endorphin continued up to 1 week, but to a lesser extent. Pretreatment with formalin for 5 and 40 h significantly reduced the i.t. ${\beta}$-endorphin-induced inhibition of the tail-flick response, which continued up to 1 week. The s.c. formalin treatment increased the hypothalamic pro-opiomelanocortin (POMC) mRNA level at 2 h, but this returned to the basal level after 40 h. Our results suggest that the increase in the POMC mRNA level in the hypothalamus appears to be involved in the supraspinal or spinal ${\beta}$-endorphin-induced antinociceptive tolerance in formalin-induced inflammatory pain.

Intracisternal Administration of Voltage Dependent Calcium Channel Blockers Attenuates Orofacial Inflammatory Nociceptive Behavior in Rats

  • Won, Kyoung-A.;Park, Sang-H.;Kim, Bo-K.;Baek, Kyoung-S.;Yoon, Dong-H.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • 제36권2호
    • /
    • pp.43-50
    • /
    • 2011
  • Voltage dependent calcium channel (VDCC), one of the most important regulator of $Ca^{2+}$ concentration in neuron, play an essential role in the central processing of nociceptive information. The present study investigated the antinociceptive effects of L, T or N type VDCC blockers on the formalin-induced orofacial inflammatory pain. Experiments were carried out on adult male Sprague-Dawley rats weighing 220-280 g. Anesthetized rats were individually fixed on a stereotaxic frame and a polyethylene (PE) tube was implanted for intracisternal injection. After 72 hours, 5% formalin ($50 \;{\mu}L$) was applied subcutaneously to the vibrissa pad and nociceptive scratching behavior was recorded for nine successive 5 min intervals. VDCC blockers were administered intracisternally 20 minutes prior to subcutaneous injection of formalin into the orofacial area. The intracisternal administration of 350 or $700{\mu}g$ of verapamil, a blocker of L type VDCC, significantly decreased the number of scratches and duration in the behavioral responses produced by formalin injection. Intracisternal administration of 75 or $150 \;{\mu}g$ of mibefradil, a T type VDCC blocker, or 11 or $22\; {\mu}g$ of cilnidipine, a N type VDCC blocker, also produced significant suppression of the number of scratches and duration of scratching in the first and second phase. Neither intracisternal administration of all VDCC blockers nor vehicle did not affect in motor dysfunction. The present results suggest that central VDCCs play an important role in orofacial nociceptive transmission and a targeted inhibition of the VDCCs is a potentially important treatment approach for inflammatory pain originating in the orofacial area.

Participation of Opioid Pathway in the Central Antinociceptive Effects of Eugenol

  • Kang, Song-hee;Kang, Sa-won;Kim, Jae-ho;Kim, Hee-young;Ryu, Hyeon-seo;Bae, So-yeon;Oh, Ju-ae;Lee, Jun-hyuk;Hyun, Ji-hee;Ahn, Dong Kuk
    • International Journal of Oral Biology
    • /
    • 제43권3호
    • /
    • pp.147-153
    • /
    • 2018
  • The aim of the present study was to evaluate the central antinociceptive effects of eugenol after intraperitoneal administration. Experiments were carried out using male Sprague-Dawley rats. Subcutaneous injection of 5% formalin-induced nociceptive behavioral responses was used as the pain model. Subcutaneous injection of 5% formalin significantly produced nociceptive responses by increasing the licking time during nociceptive behavior. Subsequent intraperitoneal injection of 100 mg/kg of eugenol led to a significant decrease in the licking time. However, low dose of eugenol (50 mg/kg) did not affect the nociceptive behavioral responses produced by subcutaneous injection of formalin. Intrathecal injection of $30{\mu}g$ of naloxone, an opioid receptor antagonist, significantly blocked antinociceptive effects produced by intraperitoneal injection of eugenol. Neither intrathecal injection of methysergide ($30{\mu}g$), a serotonin receptor antagonist nor phentolamine ($30{\mu}g$), an ${\alpha}-adrenergic$ receptor antagonist influenced antinociceptive effects of eugenol, as compared to the vehicle treatment. These results suggest that central opioid pathway participates in mediating the antinociceptive effects of eugenol.

Botulinum Toxin Type A Attenuates Activation of Glial Cells in Rat Medullary Dorsal Horn with CFA-induced Inflammatory Pain

  • Kim, Min-Ji;Cho, Jin-Ho;Kim, Hye-Jin;Yang, Kui-Ye;Ju, Jin-Sook;Lee, Min-Kyung;Park, Min-Kyoung;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.71-77
    • /
    • 2015
  • The activation of glial cells in the spinal cord has been contribute to the initiation and maintenance of pain facilitation induced by peripheral inflammation and nerve injury. The present study investigated effects of botulinum toxin type A (BoNT-A), injected subcutaneously or intracisternally, on the expression of microglia and astrocytes in rats. Complete Freund's Adjuvant (CFA)-induced inflammation was employed as an orofacial chronic inflammatory pain model. A subcutaneous injection of $40{\mu}L$ CFA into the vibrissa pad was performed under 3% isoflurane anesthesia in SD rats. Immunohistochemical analysis for changes in Iba1 (a microglia marker) and GFAP (an astrocyte marker), were performed 5 days after CFA injection. Subcutaneous injection of CFA produced increases in Iba1 and GFAP expression, in the ipsilateral superficial lamia I and II in the medullary dorsal horn of rats. Subcutaneous treatment with BoNT-A attenuated the up-regulation of Iba1 and GFAP expressions induced by CFA injection. Moreover, intracisternal injection of BoNT-A also attenuated the up-regulated Iba1 and GFAP expressions. These results suggest that the anti-nociceptive action of BoNT-A is mediated by modulation activation of glial cells, including microglia and astrocyte.