• Title/Summary/Keyword: antimycin

Search Result 30, Processing Time 0.02 seconds

Characterization of Yellow Mutants Isolated from the Red Yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous)

  • An, Gil-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 1996
  • Yellow mutants of the astaxanthin producing red yeast Phaffia rhodozyma were obtained by nitrosoguanidine mutagenesis. The carotenoid composition of the yelow mutants, Yan-1 and Ny-1, was mainly $\beta$ -carotene (> 95$%$) and torulene (< 5$$). Therefore, the yellow mutants are carotene oxygenation deficient mutants (CODMs). CODMs produced decreased quantities of carotenoids compared to their red parents and this indicated that carotene may regulate its synthesis. CODMs, Yan-1 and Ny-4, on plates containing 50 $\mu$ M antimycin, showed highly pigmented vertical papillae. Antimycin-induced mutants purified from the papillae showed increases in carotenoid content (up to 1 mg $\beta$-carotene/g yeast). CODMs, Yan-1 and Ay-1, were more sensitive to antimycin than red strains, Ant-1 and 67-385. This was probably due to lower antioxidant activity of $\beta$-carotene than that of astaxanthin. Light increased torulene and light+antimycin further increased the torulene. Yan-1 and Ny-4 could grow with succinate, though their red parents, Ant-1 and Anf-1p, could not. However, antimycin induced mutation of Yan-1 or Ny-4 destroyed the ability to grow with succinate.

  • PDF

Effects of Dexamethasone and DHEA on the Responses of Rat Cerebral Cortical Astrocytes to Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Kim, Hyung-Gun;Kim, Chang-Keun;Park, Nan-Hyang;Choi, Dong-Hee;Shim, In-Sop;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • As part of a study on the effects of dexamethasone and dehydroepiandrosterone (DHEA) on the biological roles of astrocytes in brain injury, this study evaluated the effects of dexamethasone and DHEA on the responses of primary cultured rat cortical astrocytes to lipopolysaccharide (LPS) and antimycin A. Dexamethasone decreased spontaneous release of LDH from astrocytes, and the dexamethasone effect was inhibited by DHEA. However, the inhibitory effect of DHEA on the dexamethasone-induced decrease of LDH release was not shown in astrocytes treated with LPS, and antimycin A-induced LDH release was not affected by dexamethasone or DHEA. Unlike dexamethasone, DHEA increased MTT value of astrocytes and also attenuated the antimycin A-induced decrease of MTT value. Glutamine synthetase activity of astrocytes was not affected by DHEA or LPS but increased by dexamethasone, and the dexamethasone- dependent increase was attenuated by DHEA. However, antimycin A markedly decreased glutamine synthetase activity, and the antimycin A effect was not affected by dexamethasone or DHEA. Basal release of $[^3H]arachidonic$ acid from astrocytes was moderately increased by LPS and markedly by antimycin A. Dexamethasone inhibited the basal and LPS-dependent releases of $[^3H]arachidonic$ acid, but neither dexamethasone nor DHEA affected antimycin A-induced $[^3H]arachidonic$ acid release. Basal IL-6 release from astrocytes was not affected by dexamethasone or DHEA but markedly increased by LPS and antimycin A. LPS-induced IL-6 release was attenuated by dexamethasone but was little affected by DHEA, and antimycin A-induced IL-6 release was attenuated by DHEA as well as dexamethasone. At the concentration of dexamethasone and DHEA which does not affect basal NO release from astrocytes, they moderately inhibited LPS-induced NO release but little affected antimycin A-induced decrease of NO release. Taken together, these results suggest that dexamethasone and DHEA, in somewhat different manners, modulate the astrocyte reactivity in brain injuries inhibitorily.

  • PDF

Effects of Dexamethasone and DHEA on the Changes of Glutamate and Polyamine Uptake in Rat Astrocytes by Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Lee, Bum;Shin, Kyung-Ho;Min, Bon-Hong;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.137-146
    • /
    • 1999
  • Interactions among dexamethasone, dehydroepiandrosterone (DHEA), lipopolysaccharide (LPS), and antimycin A on the glutamate uptake and the polyamine uptake were investigated in primary cultures of rat cerebral cortical astrocytes to examine the effects of dexamethasone and DHEA on the regulatory role of astrocytes in conditions of increased extracellular concentrations of glutamate or polyamines. 1. $[^3H]Glutamate$ uptake: LPS and antimycin A decreased $V_{max},$ but both drugs had little effect on $K_m.$ Dexamethasone also decreased basal $V_{max}$ without any significant effect on $K_m.$ And dexamethasone further decreased the antimycin A-induced decrease of $V_{max}.$ DHEA did not affect the kinetics of basal glutamate uptake and the change by LPS or antimycin A. 2. $[^{14}C]Putrescine$ uptake: LPS increased $V_{max},$ and antimycin A decreased $V_{max}.$ They showed little effect on $K_m.$ Dexamethasone decreased $V_{max}$ of basal uptake and further decreased the antimycin A-induced decrease of $V_{max},$ and also decreased $V_{max}$ to less than control in LPS-treated astrocytes. DHEA did not affect $K_m$ and the change of $V_{max}$ by LPS or antimycin A. 3. $[^{14}C]Spermine$ uptake: Antimycin A decreased $V_{max},$ and LPS might increase $V_{max}.\;K_m$ was little affected by the drugs. Dexamethasone decreased basal $V_{max}$ and might further decrease the antimycin A-induced decrease of $V_{max}.$ And dexamethasone also decreased $V_{max}$ to less than control in LPS-treated astrocytes. DHEA might increase basal $V_{max}$ and $V_{max}$ of LPS-treated astrocytes. 4. $V_{max}$ of glutamate uptake by astrocytes was increased by putrescine (1000 ${\mu}M$ & 2000 ${\mu}M$) and spermidine (200 ${\mu}M,$ 500 ${\mu}M$ & 2000 ${\mu}M$). Spermine, 200 ${\mu}M$ (and 100 ${\mu}M$), also increased $V_{max},$ but a higher dose of 2000 ${\mu}M$ decreased $V_{max}.\;K_m$ of glutamate uptake was not significantly changed by these polyamines, except that higher doses of spermine showed tendency to decrease $K_m$ of glutamate uptake. In astrocytes, dexamethasone inhibited the glutamate uptake and the polyamine uptake in normal or hypoxic conditions, and the polyamine uptake might be stimulated by LPS and DHEA. Polyamines could aid astrocytes to uptake glutamate.

  • PDF

Inhibition of mitochondrial activity induces muscle fiber type change from slow to fast in C2C12 myotubes

  • Park, Su Hyun;Kim, Young Hwa;Lee, Hyun Jeong;Baek, Youl Chang;Kim, Min Seok;Jeong, Jin Young;Oh, Young Kyun;Park, Sung Kwon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.586-594
    • /
    • 2017
  • Mitochondrial activity affects skeletal muscle energy metabolism and phenotype. To address whether mitochondrial activity can modulate muscle phenotype in vitro, protein expression of myosin heavy chain (MyHC) in C2C12 muscle cell lines was investigated after treated with antimycin A, an inhibitor of oxidative phosphorylation in mitochondria. Fully differentiated C2C12 myotubes were administrated with different concentration of antimycin A including 0, 100, 200, 500, 700, and 1000 ng/mL. After 72 h treatment, myosin heavy chain isoform expression and related enzyme activity (lactate dehydrogenase; LDH and creatine kinase) were analyzed. Administration of antimycin A changed expression of MyHC in C2C12 myotubes showing a shift from slow to fast twitching muscle type. Protein expression of MyHC type 2b (fast twitching muscle type) was decreased (P < 0.05) by antimycin A treatment (500, 700, and 1000 ng/mL) when compared with control group. Administration of antimycin A (1000 ng/mL), however, decreased (P < 0.05) MyHC type I (slow twitching muscle type). Interestingly, LDH activity was increased (P < 0.05) by antimycin A treatment. Results from our current study proposed a possibility that skeletal muscle phenotype, including MyHC and LDH activity, can be shifted from slow to fast twitching type by inhibiting the mitochondrial activity in C2C12 myotubes.

A New Analog of Antimycin from Streptomyces sp. M03033

  • Seo, Young-Wan;Cho, Ki-Woong;Rho, Jung-Rae;Mo, Sang-Jun;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.663-667
    • /
    • 2001
  • A new secondary metabolite was isolated from the culture broth and mycelium of Streptomyces sp. collected from marine sediment. The structure of this compound was determined to be N-formylantimycic acid methyl ester, an acyclic derivative of antimycin, on the basis of combined chemical and spectral methods. The structure-activity relationship of antimycins is discussed.

  • PDF

Incapability of Utilizing Galactose by pgs1 Mutation Occurred on the Galactose Incorporation Step in Saccharomyces cerevisiae

  • Rho, Min-Suk;Su, Xuefeng;Lee, Yoon-Shik;Kim, Woo-Ho;Dowhan, William
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.84-91
    • /
    • 2006
  • A Saccharomyces cerevisiae pgs1 nulI mutant, which is deficient with phosphatidyl glycerol (PG) and cardiolipin (CL) biosynthesis, grows well on most fermentable carbon sources, but fails to grow on non-fermentable carbon sources such as glycerol, ethanol, and lactate. This mutant also cannot grow on galactose medium as the sole carbon source. We found that the incorporation of $[^{14}C]-galactose$, which is the first step of the galactose metabolic pathway (Leloir pathway), into the pgs 1 null mutant cell was extremely repressed. Exogenously expressed PGS1 (YCpPGS1) under indigenous promoter could completely restore the pgs1 growth defect on non-fermentable carbon sources, and dramatically recovered $[^{14}C]-galactose$ incorporation into the pgs1 mutant cell. However, PGS1 expression under the GALl promoter $(YEpP_{GAL1}-PGS1myc)$ could not complement pgs1 mutation, and the GAL2-lacZ fusion gene $(YEpP_{GAL2}-lacZ)$ also did not exhibit its $\beta-galactosidase$ activity in the pgs1 mutant. In wild-type yeast, antimycin $A(1\;{\mu}g/ml)$, which inhibits mitochondrial complex III, severely repressed not only the expression of the GAL2-lacZ fusion gene, but also uptake of $[^{14}C]-galactose$. However, exogenously expressed PGS1 partially relieved these inhibitory effects of antimycin A in both the pgs1 mutant and wild-type yeast, although it could not basically restore the growth defect on galactose by antimycin A. These results suggest that the PGSI gene product has an important role in utilization of galactose by Gal genes, and that intact mitochondrial function with PGS1 should be required for galactose incorporation into the Leloir pathway. The PGS1 gene might provide a clue to resolve the historic issue about the incapability of galactose with deteriorated mitochondrial function.

Generation of Superoxide Radical from Rat Brain Mitochondria and Mechanism of Its Toxic Action to Mitochondrial and Extra-mitochondrial Components (흰쥐 뇌 미토콘드리아에 의한 superoxide radical의 생성과 이 radical이 미토콘드리아 및 미토콘드리아 외 물질에 대한 독작용과 그 기전에 관한 연구)

  • Roh, Jae-Kyu;Pyo, Jang-Geun;Chung, Myung-Hee;Lim, Jung-Kyoo;Myung, Ho-Jin
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.12-26
    • /
    • 1985
  • The generation of $O^{-}_{2}{\cdot}$ and its toxic effects were studied with rat brain mitochondria. The production of $O^{-}_{2}{\cdot}$ from mitochondria in the presence of succinate and antimycin was demonstrated by SOD-inhibitable reduction of NBT. Although succinate can support the $O^{-}_{2}{\cdot}$ formation, the highest rate needs antimycin indicating that blockade of electron flow in the respiratory chain augments the univalent reduction of molecular oxygen. Under this condition, $H_2O_2$ was also observed to be produced. But its formation appears to be derived from the dismutation of the primary product, $O^{-}_{2}{\cdot}$ since the rate of $H_2O_2$ production was markedly decreased by NBT and ferricytochrome c. The $O^{-}_{2}{\cdot}$ and $H_2O_2$ produced were able to cause toxic actions to mitochondrial and extra-mitochondrial components as shown by lipid peroxidation of mitochondrial membrane, and inactivation and lysis of isocitrate dehydrogenase and erythrocytes added to the medium, respectively. In all the toxic actions observed, $Fe^{++}$ was required. It appears that in the toxic actions $OH{\cdot}$ generated from the iron-catalyzed Haber-Weiss reaction acts as a mediator. This was supported by the finding that mitochondria in the presence of succinate and antimycin produced ethylene from methional, and $Fe^{++}$ added increased the ethylene production. The observed toxic actions of mitochondrial $O^{-}_{2}{\cdot}$ may provide evidence supporting a potential role of mitochondria as a source of oxygen radicals to cause tissue damage.

  • PDF

Effect of Oxygen Radicals and Aeration on Carotenogenesis and Growth of Phaffia rhodozyma(Xanthophyllomyces dendrorhous)

  • An, Gil-Hwan;Chang, Keng-Wei;Johnson, Eric-A
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1996
  • Mn(II)+succinate decreased the carotenoid formation of the yeast Phaffia rhodozyma, probably by scavenging $O_2$. When duroquinone (DQ), an internal and external $O_2$ generator, was added to medium, P. rhodozyma produced more amount of carotenoids. The increased carotenoid production was destroyed by oxygen radical (OR) scavengers, ascorbate+Cu(II) and dimethylsulfoxide. When sub-lethal concentrations of $H_2O_2$ , an external OR source, and antimycin, an internal OR inducer, were used, the effect of $H_2O_2$ on carotenoid formation and composition was less significant than that of antimycin. Addition of superoxide dismutase, an external OR remover, rescued cells from death caused by the high concentration of DO. In this condition, the yeast culture showed an increase in carotenoid content. Addition of DQ into P. rhodozyma culture in the stationary phase did not increase carotenoid production. Therefore, carotenoid formation was stimulated by internal ORs in the growing yeast. It was probably due to release of catabolite repression on carotenogenesis in the yeast. Aeration was important for carotenoid production but was not as effective as the internal OR producer, DQ.

  • PDF

Control Effects of an Antibiotic Produced by Streptomyces sp. B25 on Tobacco Mosaic Virus and Determination of Its Molecular Structure

  • Yeo, Woon-Hyung;Kim, Young-Ho;Kim, Young-Sook;Kim, Sang-Seock;Chae, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.172-177
    • /
    • 1998
  • The culture filtrate of Streptomyces sp. B25, which was identified in this experiment, was tested for the control of tobacco mosaic virus (TMV) with the susceptible tobacco cultivar, NC 82, under the field conditions following the preliminary examination of its characters for TMV control. Control efficacy of the culture filtrate against TMV infection continued over 50% up to 6 days after treatment, and its systemic effect was about 30% of the direct effect. In field conditions control efficacy of the culture filtrate against TMV infection was 95.3 % at 2 weeks after TMV inoculation, and decreased to 58.3 % at 3 weeks after inoculation. Five fold-dilution of the culture filtrate showed about half of the control efficacy by the stock culture filtrate. Analysis of the antibiotic material responsible for the inhibition of TMV infection through nuclear magnetic resonance experiments revealed that the antibiotic is antimycin $A_1$, which is firstly reported as an anti-phytoviral antibiotic in this experiment.

  • PDF