• 제목/요약/키워드: antimicrobial potential

검색결과 647건 처리시간 0.03초

Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+ T-Cell Proliferation and IL-2 Production in CD4+ T Cells

  • Hwang, Yun-Ho;Lee, Sung-Ju;Kang, Kyung-Yun;Hur, Jae-Seoun;Yee, Sung-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1189-1197
    • /
    • 2017
  • Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of $CD8^+$ T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of $CD8^+$ T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and $IFN-{\gamma}$ as the $CD8^+$ T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain ($IL-2R{\alpha}$) on $CD8^+$ T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, $IFN-{\gamma}$, and CD69 on $CD8^+$ T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of $IL-2R{\alpha}$ expression in $CD8^+$ T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

High Resolution Whole Genome Multilocus Sequence Typing (wgMLST) Schemes for Salmonella enterica Weltevreden Epidemiologic Investigations

  • Tadee, Pakpoom;Tadee, Phacharaporn;Hitchings, Matthew D.;Pascoe, Ben;Sheppard, Samuel K.;Patchanee, Prapas
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.162-170
    • /
    • 2018
  • Non-typhoidal Salmonella is one of the main pathogens causing food-borne illness in humans, with up to 20% of cases resulting from consumption of pork products. Over the gastroenteritis signs, multidrug resistant Salmonella has arisen. In this study, pan-susceptible phenotypic strains of Salmonella enterica serotype Weltevreden recovered from pig production chain in Chiang Mai, Thailand during 2012-2014 were chosen for analysis. The aim of this study was to use whole genome sequencing (WGS) data with an emphasis on antimicrobial resistance gene investigation to assess their pathogenic potential and genetic diversity determination based on whole genome Multilocus Sequence Typing (wgMLST) to expand epidemiological knowledge and to provide additional guidance for disease control. Analyis using ResFinder 3.0 for WGS database tracing found that one of pan-susceptible phenotypic strain carried five classes of resistance genes: aminoglycoside, beta-lactam, phenicol, sulfonamide, and tetracycline associated genes. Twenty four and 36 loci differences were detected by core genome Multilocus Sequence Typing (cgMLST) and pan genome Multilocus Sequence Typing (pgMLST), respectively, in two matching strains (44/13 vs A543057 and A543056 vs 204/13) initially assigned by conventional MLST and Pulsed-field Gel Electrophoresis (PFGE). One hundread percent discriminant ability can be achieved using the wgMLST technique. WGS is currently the ultimate molecular technique for various in-depth studies. As the findings stated above, a new of "gold standard typing method era" for routine works in genome study is being set.

Anti-Inflammatory and Anti-Superbacterial Activity of Polyphenols Isolated from Black Raspberry

  • Kim, Seong Keun;Kim, Hyuna;Kim, Song Ah;Park, Hee Kuk;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2013
  • The fruit of the black raspberry (Rubus coreanus Miquel) has been employed in traditional medicine, and recent studies have demonstrated its measureable biological activities. However, the root of the black raspberry has not been studied. Therefore, in this study, we evaluated the anti-inflammatory and antibacterial properties of the root and unripe fruit polyphenols of the black raspberry. Both polyphenols proved to have anti-inflammatory activity as evidenced by the decreased nitric oxide (NO), cytokines (IL-$1{\beta}$, IL-6, and IL-10) and prostaglandin E2 ($PGE_2$) levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. However, root polyphenols showed stronger anti-inflammatory activity than fruit polyphenols. LPS-induced mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 levels were also decreased, confirming the anti-inflammatory activity. Root polyphenols showed lethal activity against methicillin-resistant Staphy-lococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB), and Bacillus anthracis. In contrast, the black raspberry fruit did not demonstrate these properties. These data provide the first demonstration that black raspberry root has potential anti-inflammatory and anti-superbacterial properties that can be exploited as alternatives for use in the food and cosmetic industries and/or as pharmaceuticals.

Green Synthesis of Silver Nanoparticles Using Cell Extracts of Anabaena doliolum and Screening of Its Antibacterial and Antitumor Activity

  • Singh, Garvita;Babele, Piyoosh K.;Shahi, Shailesh K.;Sinha, Rajeshwar P.;Tyagi, Madhu B.;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1354-1367
    • /
    • 2014
  • In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEM-selected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag-CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Calcium Lactate Affects Shelf-life and Firmness of Kimchi

  • Kim, Soon-Dong;Kim, Mee-Hyang;Kim, Mee-Jung
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2003년도 춘계총회 및 제22차 학술발표회
    • /
    • pp.136-136
    • /
    • 2003
  • Calcium lactate has been known extending shelf-life of several lactic acid fermented foods through buffer action with lactic acid and binding of calcium and pectic polysaccharides in the tissue. But, the effects in kimchi during storage and distribution has not been observed. Calcium lactate is tasteless, nontoxic compounds commonly used in a number of food products. Recent observations have indicated the potential usefulness of calcium lactate as food additive which has anticariogenic-, antimicrobial-, anticalculus, anti- carcinogenic effects and enhancement of bone mineral density. In this work we determined the effects of calcium lactate(CaL)-treatment(0, 1, 2 and 3% against salted Chinese cabbage) on the pH, acidity, microbial counts, content of alcohol insoluble substance and calcium texture, color, scanning electron microscopic observation of kimchi tissue and sensory test during storage. pH of CaL treated kimchi were higher(3.78∼3.92) than that of control products(3.58). Total microbe(TM) of CaL treated kimchis were lower but ratio of lactic acid bacteria against TM was higher than those of control products, respectively. Calcium content of treated products were 3-5 times higher than control products. The hardness and crispy taste of treated products were remarkably higher than those of control products evaluated by SEM observation AIS analysis, sensory and textural analysis. Moreover, evaluation on the pH, acidity and sensory test showed the shelf-life of treated kimchi(CaL 2%) to be 25-30 days, which was 13-15 days longer than that of control products.

  • PDF

Antibacterial effect of ethylacetate fraction of Orostachys japonicus on Enterococcus faecalis causing Endophthalmitis

  • Kim, Hanwoo;Park, Indal;Lee, Sangjun;Shin, Dongyoung;Kim, Jiyeun Kate
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.113-113
    • /
    • 2018
  • Endophthalmitis is a disease that causes ocular inflammation and has a catastrophic effect on eyesight. Recent studies show that Enterococcus faecalis is rapidly increasing causative bacterium of endophthalmitis. It is predicted that the increased endophthalmitis by E. faecalis is presumable due to the high resistance of E. faecalis to moxifloxacin (MFX), which is a common antibiotic used for eye drop. Because of the need for therapeutic agents to overcome this problem, this study sought to explore the feasibility of developing a combination therapy using Orostachys japonicus. The ethylacetate fraction of O. japonicus (OJA) used in this study. Antimicrobial activity was tested 13 E. faecalis strains including one E. faecalis standard strain, eight clinically isolated E. faecalis strains and four quinolone resistant E. faecalis strains using CLSI antibiotic susceptibility test method. Minimal Inhibitory Concentration (MIC) of OJA was confirmed to be $500{\mu}g/ml$ for all 13 strains. Then we tested for the synergistic effect of OJA to MFX using checkboard test method. The MIC of MFX was $0.25{\mu}g/ml$ for the standard strain and 8 for the clinical isolates, and $16{\sim}64{\mu}g/ml$ for the quinolone - resistant strains. When OJA was mixed with MFX, no synergistic effect was observed in all strains, but the antibacterial activity of OJA remained unchanged. Most ocular other strains can be removed by MFX except the MFX resistant E. faecalis, which can be removed by OJA in combination therapy. Therefore, OJA can be a potential candidate for the combined treatment endophthalmitis.

  • PDF

적색, 초록, 청색 및 혼합광 LED 조사의 식중독균 저해 효과 (Inactivation of Bacterial Pathogens by Irradiation of Red, Green, Blue and Combined Light-Emitting Diode (LED))

  • 문진석;오명민;주우하;한남수
    • KSBB Journal
    • /
    • 제28권6호
    • /
    • pp.428-432
    • /
    • 2013
  • The antimicrobial properties of Light-Emitting Diode (LED) are an area of increasing interest. The aim of this study was to evaluate the bactericidal effects of blue (peak at 456 nm), green (peak at 518 nm), red (peak at 654 nm) and blue-green combined (blue 456 nm : green 558 nm = 69:31) LED irradiation to pathogenic bacteria. For this, LED equipment providing power density of $10mW/cm^2$ was installed and plates were exposed to 0.9 or $3.0mW/cm^2$ to irradiate bacteria with 3.2 to $259.2mW/cm^2$ of energy density. As a result, blue and combined LED have shown bactericidal effects on Escherichia coli KCTC 1467 and Listeria monocytogenes ATCC 19115 after irradiation of $3.0mW/cm^2$ for 2 and 4 hr, respectively. Staphylococcus aureus KCTC 1916 was inhibited at 518 nm green LED irradiation. However, red LED irradiation showed no inhibitory effect to the other tested strains. Light technology that utilizes the bactericidal properties of blue (at 456 nm) and blue-green(blue 456 nm : green 558 nm = 69:31) combined LED may have potential applications in the food industry sector.

Volatile Flavor Compounds in the Leaves of Fifteen Taxa of Korean Native Chrysanthemum Species

  • Kim, Su Jeong;Ha, Tae Joung;Kim, Jongyun;Nam, Jung Hwan;Yoo, Dong Lim;Suh, Jong Taek;Kim, Ki Sun
    • 원예과학기술지
    • /
    • 제32권4호
    • /
    • pp.558-570
    • /
    • 2014
  • This study was conducted to compare the volatile flavor compounds found in the leaves of 15 taxa of Korean native Chrysanthemum species. The volatile flavor compounds from the taxa were collected using a simultaneous steam distillation and extraction technique and were analyzed using gas chromatography/mass selective detector (GC/MSD). A total of 45 volatile flavor compounds were identified with six functional groups: 14 alcohols, 4 ketones, 19 hydrocarbons, 5 esters, 2 acids, and 1 aldehyde. The main functional group in 15 taxa of Chrysanthemum species was alcohols, accounting for 28.7% of volatile flavor compounds, followed by ketones (21.2%) and hydrocarbons (13.2%). Camphor, which is known for its antimicrobial properties, was the most abundant volatile compound (30%) in C. zawadskii ssp. latilobum and var. leiophyllum. In particular, C. indicum subspecies and C. boreale contained ${\alpha}$-thujone, which has outstanding anti-bacterial, anti-cancer, anti-inflammatory, anti-ulcer, and anti-diabetic efficacies. C. indicum var. albescens could be used in perfumes, since it showed 21 times more camphene than C. indicum. In addition, C. indicum var. acuta contained a fairly high content of 1,8-cineole, which has an inhibitory effect on mutagenesis. C. lineare contained only pentadecanoic acid compounds, whereas other taxa hexadecanoic acids. Overall, the Korean native Chrysanthemum species had considerable variation in volatile flavor compounds in their leaves. This study provides a good indication of specific potential use for various applications.

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens

  • Bibi, Fehmida;Yasir, Muhammad;Song, Geun-Cheol;Lee, Sang-Yeol;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.20-31
    • /
    • 2012
  • Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.