• Title/Summary/Keyword: antimicrobial membrane

Search Result 194, Processing Time 0.023 seconds

Identification of an Actinomycetes Strain, MSA-1, Originated from Sponge, Halichondria okadai, and its Antimicrobial Component (검정해면으로부터 항균성을 가진 방선균의 분리 동정 및 항균물질의 구조)

  • LEE Jong-Soo;CHOI Jong-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.516-522
    • /
    • 1998
  • An Actinomycetes strain, MSA-1, containing antimicrobial component was isolated from the black sponge, Halichondzia okadai, and was identified to a genus level by morphological and chemotaxonornic methods. The gray colored spores were oval type with smooth surface and formed flexibilis spore chains. The cell wall of this strain was type I containing D-aminopimellic acid (D-DAP) and no specific sugar was detected. Phospholipid of the cell membrane was PII type including phophoethanolamine and the major fatty acids of total lipid were branched anteiso-15 : 0, iso-16 : 0, 16 : 0 and iso-17 ; 0. From these results and other characteristics described in the Bergey's Manual, this strain was identificated as a Streptomyces sp. Meanwhile, 10mg of pale yellow colored antimicreobial component was isolated by HPLC method from the cultured Streptomyces sp. (70g of cryophillized mycellis). By crystallographyc analysis, HIRESMS and NMR assignment, the antimicrobial component produced from the strain MSA-1 was elucidated as the staurosporine (indolo[2,3-a]carbazole alkaloid).

  • PDF

Antibacterial Effect of Chitooligosaccharides with Different Molecular Weights Prepared Using Membrane Bioreactor

  • Kim, Se-Kwon;Jeon, You-Jin;Park, Pyo-Jam
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.86-87
    • /
    • 2000
  • Chitosan (deacetylated form of chitin) possesses strong antibacterial activities such as antimicrobial effect, antifungal effect and the induction of plant defense response. Chitosan itself, however, has high molecular weight and viscosity as well as water-insolubility, These natures may restrict applications in various fields, especially in in vivo system. While the hydrolysates of chitosan, chitooligosaccharides (COS) are not only lower in the molecula. weight and viscosity, but also water-soluble. Thus, they would be expected more efficient absorption in vivo. Besides several documents have been reported antibacterial activities of COS against microorganisms (Kendra et al., 1989; Uchida et al., 1989). (omitted)

  • PDF

Antimicrobial effect of chitosan oligosaccharides, prepared under ultrafiltration membrane bioreactor, against pathogenic bacteria causing flounder fish diseases in aquacultural farm

  • Heo, Moon-Soo;Jeon, You-Jin;Lee, Ki-Wan;Song, Choon-Bok;Lee, Jehee;Yeo, In-Kyo;Yang, Byung-Gyoo;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.145-146
    • /
    • 2001
  • Despite a variety of development in fish farming during the last decades, fish diseases by bacteria, virus, and parasites are still major problems in aquaculture. Aquaculture of Hounder fish is widely performed around Korea as well as Jeju island, due to relatively stable seed production, short farming period, and a higher value in market. However, intensive feeding and environmental pollution in aquacutural farm act as a great limiting factor in economic aspect. (omitted)

  • PDF

Antibacterial Activity of Ciprofloxacin-incorporated Central Venous Catheters and its Mechanism Against Planktonic Bacterial Cells

  • Jeon, Sung-Min;Kim, Mal-Nam
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • Bloodstream infections (BSI) are caused by planktonic microorganisms, sometimes leading to serious infections such as bacteremia and sepsis. BSI occurs more frequently to the patients wearing the central venous catheter (CVC). The ciprofloxacin-incorporated CVC (CFX-CVC) has been reported previously to possess antimicrobial activity. In this study, the antibacterial activity of CFX-CVC and its mechanism against planktonic BSI cells were explored by using the shake flask test and by examining the release rate of 260 nm-absorbing substances from the bacterial cells indicative of the membrane damage of the bacterial cells. CFX-CVC reduced more than 99.9% of the viable planktonic BSI cells demonstrating its potent antibacterial activity. It provoked bacteriolysis causing leakage of a large amount of 260 nm-absorbing materials from the planktonic bacterial cells like S. aureus and E. coli. These results provide evidence that the antibacterial activity of CFX-CVC came from the inhibition of the stability of the planktonic bacterial cells.

  • PDF

Isolation of Bacteriocin-Producing Lactococcus sp.HY 449 and Its Antimicrobial Characteristics (Bacteriocin을 생산하는 Lactococcus sp. HY 449의 분리와 항균 특성)

  • Kim, Sang-Kyo;Lee, Sang-Jun;Baek, Young-Jin;Park, Yun-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.259-265
    • /
    • 1994
  • A bacteriocin-producing lactic acid bacteria was isolated from contaminated milk products, which was identified by using the API50 CH kit as Lactococcus lactis subsp. lactis with reliability of 98%. Fatty and analysia of the cell membrane showed that this strain contained same fatty acids profiles as type strain, Lactococcus lactis subsp. lactis ATCC 19435. The bacteriocin of Lactococcus sp. HY 449 showed relatively wide range of inhibition spectrum against gram positive and some gram negative bacteria such as Escherichia coli and maintained the inhibitory activity between pH2.0 and pH9.0 The thermostability of this bacteriocin was higher in acidic solution than in distilled water and was stable at 60$\circ $C for 1 hour.

  • PDF

Anticancer activity of CopA3 dimer peptide in human gastric cancer cells

  • Lee, Joon Ha;Kim, In-Woo;Kim, Sang-Hee;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Kang, Dong-Chul;Hwang, Jae Sam
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.324-329
    • /
    • 2015
  • CopA3 is a homodimeric ${\alpha}$-helical peptide derived from coprisin which is a defensin-like antimicrobial peptide that was identified from the dung beetle, Copris tripartitus. CopA3 has been reported to have anticancer activity against leukemia cancer cells. In the present study, we investigated the anticancer activity of CopA3 in human gastric cancer cells. CopA3 reduced cell viability and it was cytotoxic to gastric cancer cells in the MTS and LDH release assay, respectively. CopA3 was shown to induce necrotic cell death of the gastric cancer cells by flow cytometric analysis and acridine orange/ethidium bromide staining. CopA3-induced cell death was mediated by specific interactions with phosphatidylserine, a membrane component of cancer cells. Taken together, these data indicated that CopA3 mainly caused necrosis of gastric cancer cells, probably through interactions with phosphatidylserine, which suggests the potential utility of CopA3 as a cancer therapeutic. [BMB Reports 2015; 48(6): 324-329]

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Determination of Antibiotic Residues: I. Extraction and Clean-up Methods for Solid Samples_A Review (시료 중 잔류 항생제 분석 방법: I. 고상 시료 전처리 방법)

  • Kim, Chansik;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.600-627
    • /
    • 2016
  • Korea is one of the countries with a large veterinary antibiotics market, although antimicrobial resistance in bacteria is becoming a serious issue in many countries. The Korean government started to take interest in estimating the effects of livestock manure on rivers and agricultural soils and in monitoring of heavy metals, organic pollutants and antibiotics in the ambient water and soil. In this paper, pre-treatment methods to separate the selected antibiotics from solid samples were reviewed. It is essential to select an efficient and appropriate procedure for pre-treatment due to the high proportion of proteins and organics in biosolid samples. Pre-treatment consists of extraction followed by clean-up. Initially, homogenized samples were extracted by sonication, mechanical agitation or pressurized liquid extraction with methanol/acetonitrile/water mixture under acidic/basic conditions depending on the compound. However, aminoglycosides and colistin were extracted with 5% trichloroacetic acid and HCl, respectively. Since the ${\beta}-lactams$ are easily decomposed in acidic and basic conditions, they were extracted in neutral pH. Filtration with a membrane (pore size, $0.2{\mu}m$) or solid phase extraction with HLB and methanol, as eluents, was normally applied for the clean-up. At least, three different pre-treatment procedures should be adopted to screen all the selected antibiotics in solid samples.

A Study on Antibacterial Activity of Daehwanggeonwoo-san(Dahwangqianniu-san) Ethanol Extract against Methicillin-Resistant Staphylococcus Aureus (대황견우산(大黃牽牛散) 에탄올 추출물의 Methicillin 내성 Staphylococcus aureus에 대한 항균활성 연구)

  • Park, Ju-yeong;Na, Yong-su;Oh, Gong-cheon;Lee, Sang-mi;Choi, Byeong-kwon;Lee, Yoon-seung;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.2
    • /
    • pp.21-35
    • /
    • 2018
  • Objectives The objective of this study is to determine the antimicrobial effect of Daehwanggyeonu-san(Dahwangqianniu-san,DGE) and synergistic effects with antibiotics oxacillin, ampicillin, and gentamicin against Methicillin-Resistant Staphylococcus aureus(MRSA). Methods The antibacterial activity of DGE extract was evaluated againest MRSA strains by using the Disc diffusion method, broth microdilution method(minimal inhibitory concentration; MIC), checkerboard dilution test. The checkerboard dilution test was used to examined synergetic effect of oxacillin, ampicillin, gentamicin, ciprofloxacin with DGE extract. Results DGE showed antimicrobial activity against MRSA with an MIC value of $125{\sim}250{\mu}g/mL$. In the checkerboard test, the interation of DGE with all tested antibiotics produced almost synergy or partial synergy against MRSA. Conclusions This study shows that DGE reduced the MICs of several antibiotics tested, and a remarkable antibacterial effect of DGE, with membrane permeability enhancers and ATP synthase inhibitors. This study can be a valuable source for the development of a new drug with low MRSA resistance.

Influences of Hinge Region of a Systhetic Antimicrobial Peptide, Cecropin A(1-13)-Melittin(1-13) Hybrid on Antibiotic Activity

  • 신송엽;강주현;이동건;장소윤;서무열;김길룡;함경수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1078-1084
    • /
    • 1999
  • A synthetic cecropin A(1-13)-melittin(1-13) [CA-ME] hybrid peptide was known to be an antimicrobial peptide having strong antibacterial, antifungal and antitumor activity with minimal cytotoxic effect against human erythrocyte. Analogues were synthesized to investigate the influences of the flexible hinge region of CA-ME on the antibiotic activity. Antibiotic activity of the peptides was measured by the growth inhibition against bac-terial, fungal and tumor cells and vesicle-aggregating or disrupting activity. The deletion of Gln-Gly-Ile (P1) or Gly-Gln-Gly-Ile-Gly (P3) from CA-ME brought about a significant decrease on the antibiotic activities. In contrast, Gly-Ile-Gly deletion (P2) from CA-ME or Pro insertion (P5) instead of Gly-Gln-Gly-Ile-Gly of CA-ME retained antibiotic activity. This result indicated that the flexible hinge or β-bend structure provided by Gly-Gln-Gly-Ile-Gly, Gln-Gly, or Pro in the central region of the peptides is requisite for its effective antibiotic activity and may facilitate easily the hydrophobic C-terminal region of the peptide to penetrate the lipid bilayers of the target cell membrane. In contrast, P4 and P6 with Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central region of the peptide caused a drastic reduction on the antibiotic activities. This result suggested that the con-secutive β-bend structure provided by Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central hinge region of the peptide seems to interrupt the ion channel/pore formation on the target cell membranes.