• Title/Summary/Keyword: antigen-specific T cells

Search Result 172, Processing Time 0.019 seconds

Shaping Heterogeneity of Naive CD8+ T Cell Pools

  • Sung-Woo Lee;Gil-Woo Lee;Hee-Ok Kim;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.19
    • /
    • 2023
  • Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naive" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.

Covalent Linkage of IL-12 and Ovalbumin Confines the Effects of IL-12 to Ovalbumin-specific Immune Responses

  • Kim, Tae-Sung;Hwang, Seung-Yong;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.396-403
    • /
    • 1997
  • In order to direct the form of the immune response in an antigen-specific manner, we constructed a fusion protein (OVA/IL12) that contained the T cell-dependent antigen, ovalbumin (OVA), covalently linked to murine interleukin-12 (IL-12). The OVA/IL12 protein was produced in a baculovirus expression system and was purified by anti-OVA immunoaffinity chromatography. The purified OVA/ILI2 protein displayed potent IL-12 bioactivity in an IL-12 proliferation assay. BALB/c mice immunized with the OVA/IL12 protein produced increased quantities of anti-OVA IgG2a antibody compared with mice immunized with recombinant OVA alone. Lymph node cells from the immunized mice with the OVA/IL12 protein produced large amounts of IFN-,Y when restimulated in vitro with OVA, while those from mice immunized with the OVA protein produced little or no IFN-.gamma.. In contrast, immunization with a mixture of OVA and free recombinant IL-12 also induced IFN-.gamma. production, which was not OVA-specific. These studies indicate that the OVA/IL12 fusion protein can induce OVA-specific, Th1-dominated immune responses, and that the covalent linkage of OVA and IL-12 confines the effect of IL-12 to OVA-specific cells.

  • PDF

3C8, a new monoclonal antibody directed against a follicular dendritic cell line, HK

  • Lee, In Yong;Lee, Joonhee;Park, Weon Seo;Nam, Eui-Cheol;Shin, Yung Oh;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 2001
  • Background : Follicular dendritic cells (FDCs) play key roles during T cell-dependent humoral immune responses by allowing antigen-specific B cells to survive, proliferate, and differentiate within the FDC networks of secondary follicles, i.e., germinal centers (GC). Methods: A novel monoclonal antibody, 3C8, was generated by immunizing with an FDC line HK, in order to understand the molecular signals involved in the FDC-B cell interactions in the microenvironment of the GC. Results: The 3C8 antibody did not bind to mononuclear cells, including T cells, B cells, and monocytes. Murine L929 and human skin fibroblasts exhibited no or little reactivity to 3C8. However, 3C8 specifically recognized HK cells by flowcytometry. Furthermore, the antigen recognized by 3C8 was restricted to the GC of the human tonsil. Dendritic networks of the GC were intensely stained by 3C8, but cells outside the GC were not. Conclusion: Our results suggest that the antigen 3C8 may play some unique role on FDCs during the GC reactions.

  • PDF

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Cytotoxicities of Tumor-specific T Lymphocytes Primed by Glioma Apoptotic Body - or Glioma Cell Lysate-pulsed Dendritic Cells

  • Kim, Jong-Tae;Chung, Dong-Sup;Kwak, Seung-Won;Han, Young-Min;Park, Young-Sup;Kim, Moon-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.2
    • /
    • pp.126-131
    • /
    • 2005
  • Objective : The choice of tumor antigen for dendritic cell[DC]-loading has still been an unresolved problem in the DC-based vaccine strategies against malignant gliomas that has not been found well-characterized tumor specific antigens. In this study, we compare tumor-specific T cell response induced by glioma apoptotic body[GAB]-pulsed DCs to response induced by glioma cell lysate-pulsed ones quantitatively. Methods : DCs generated in the presence of granulocyte macrophage-colony stimulating factor and interleukin[IL]-4 from peripheral blood mononuclear cells[PBMCs] of HLA-A2 positive healthy donors were cultured. Each GABs and glioma cell lysate generated from HLA-A2 positive T98G glioblastoma cells were co-incubated with DCs. $CD8^+$ T lymphocytes isolated from PBMCs of same donors were cultured in media containing IL-2 and either stimulated by GAB- or lysate-pulsed DCs three times at a weekly interval. The interferon[IFN]-${\gamma}$ concentrations of each cell culture supernate were measured by enzyme immunoassay technique. Cytolytic activity of the generated cytotoxic $CD8^+$ T cells either stimulated with GAB- or lysate-pulsed DCs was determined by a standard 4-h $^{51}Cr$-release assay. Results : IFN-${\gamma}$ production and cytolytic activity of effector T cells stimulated by GAB-pulsed DCs were significantly higher than those of T cells stimulated by lysate-pulsed ones. Conclusion : These results indicate the choice of antigen is a critical determinant in the induction of antitumor immunity against malignant glioma. Antigen preparations from GABs represent a promising alternative to glioma cell lysate in DC-based glioma vaccine strategies.

T-Cell Dysfunction and Inhibitory Receptors in Hepatitis C Virus Infection

  • Lee, Jino;Suh, William I.;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.120-125
    • /
    • 2010
  • Dysfunction of the virus-specific T cells is a cardinal feature in chronic persistent viral infections such as one caused by hepatitis C virus (HCV). In chronic HCV infection, virus-specific dysfunctional CD8 T cells often overexpress various inhibitory receptors. Programmed cell death 1 (PD-1) was the first among these inhibitory receptors that were identified to be overexpressed in functionally impaired T cells. The roles of other inhibitory receptors such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and T cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) have also been demonstrated in T-cell dysfunctions that occur in chronic HCV patients. Blocking these inhibitory receptors in vitro restores the functions of HCV-specific CD8 T cells and allows enhanced proliferation, cytolytic activity and cytokine production. Therefore, the blockade of the inhibitory receptors is considered as a novel strategy for the treatment of chronic HCV infection.

The Roles of Immune Regulatory Factors FoxP3, PD-1, and CTLA-4 in Chronic Viral Infection (만성 바이러스 감염에서 면역조절인자 FoxP3, PD-1 및 CTLA-4의 역할)

  • Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) cause viral infections that lead to chronic diseases. When they invade human body, virus specific T cells play an important role in antiviral effector functions including killing virus-infected cells and helping B cells to produce specific antibodies against viral proteins. The antiviral activity of T cells is usually affected by immune-regulatory factors that express on surface of T cells. Recently, many researchers have investigated the relationship between effector functions of virus specific T cells and characteristics of immune regulatory factors (e.g., CD28, CD25, CD45RO, FoxP3, PD-1, CTLA-4). In particular, Immune inhibitory molecules such as forkhead box P3 (FoxP3), programmed death-1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with T-cell dysfunction. They are shown to be up-regulated in chronic viral diseases such as hepatitis B, hepatitis C or human immunodeficiency virus infection. Therefore, the positive correlation between viral persistence and expression of immune regulatory factors (FoxP3, PD-1, and CTLA-4) has been suggested. In this review, the roles of immune regulatory factors FoxP3, PD-1, and CTLA-4 were discussed in chronic viral diseases such as HIV, HBV, or HCV.

Induction of Peripheral Tolerance in Dual TCR T Cells: an Evidence for Non-dominant Signaling by One TCR

  • Hah, Chae-Rim;Kim, Mi-Hyung;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.334-342
    • /
    • 2005
  • Recently, the existence of T cells with dual T cell receptor (TCR) in the immune system is generally accepted, while it has been controversial whether signals through one TCR would affect the functions of the other. In this study T cells expressing two different TCR were obtained from cross-hybrids of LCMV and AND TCR transgenic mice specific for the gp33 and peptide fragment of PCC (fPCC), respectively. Peptide stimulation demonstrated that the dual TCR T cells functioned independently in an antigen-specific manner. To examine whether the tolerance targeted for the one TCR affects the responsiveness of the other, the cross-hybrids were treated with gp33. Although T cells from F1 mice were rendered anergenic to gp33, no functional changes to fPCC were observed in terms of cellular proliferation and IL-2 secretion, suggesting that the dual TCR T cells remained reactive to fPCC. We therefore propose that signaling through the TCR is receptor-specific and 'negative dominance' of one TCR by tolerance induction is not applicable in this dual TCR system.

Enhanced Induction of T Cell Immunity Using Dendritic Cells Pulsed with HIV Tat and HCMV-pp65 Fusion Protein In Vitro

  • Park, Jung-Sun;Park, Soo-Young;Cho, Hyun-Il;Sohn, Hyun-Jung;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • Background: Cytotoxic T lymphocytes (CTLs) appear to play an important role in the control and prevention of human cytomegalovirus (HCMV) infection. The pp65 antigen is a structural protein, which has been defined as a potential target for effective immunity against HCMV infection. Incorporation of an 11 amino acid region of the HIV TAT protein transduction domain (Tat) into protein facilitates rapid, efficient entry into cells. Methods: To establish a strategy for the generation of HCMV-specific CTLs in vitro, recombinant truncated N- and C-terminal pp65 protein (pp65 N&C) and N- and C-terminal pp65 protein fused with Tat (Tat/pp65 N&C) was produced in E.coli system. Peripheral blood mononuclear cells were stimulated with dendritic cells (DCs) pulsed with pp65 N&C or Tat/pp65 N&C protein and immune responses induced was examined using IFN-${\gamma}$ ELISPOT assay, cytotoxicity assay and tetramer staining. Results: DCs pulsed with Tat/pp65N&C protein could induce higher T-cell responses in vitro compared with pp65N&C. Moreover, the DCs pulsed with Tat/pp65 N&C could stimulate both of $CD8^+$ and $CD4^+$ T-cell responses. The T cells induced by DCs pulsed with Tat/pp65 N&C showed higher cytotoxicity than that of pp65-pulsed DCs against autologous lymphoblastoid B-cell line (LCL) expressing the HCMV-pp65 antigen. Conclusion: Our results suggest that DCs pulsed with Tat/pp65 N&C protein effectively induced pp65-specific CTL in vitro. Tat fusion recombinant protein may be useful for the development of adoptive T-cell immunotherapy and DC-based vaccines.

Changes of Cytokine and Chemokine mRNA Expression in Whole Blood Cells from Active Pulmonary Tuberculosis Patients after T-Cell Mitogen and Mycobacterium tuberculosis Specific Antigen Stimulation

  • Kim, Sunghyun;Park, Sangjung;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2014
  • Tuberculosis (TB) is one of the major global health problems and it has been estimated that in 5~10% of Mycobacterium tuberculosis (MTB)-infected individuals, the infection progresses to an active disease. Numerous cytokines and chemokines regulate immunological responses at cellular level including stimulation and recruitment of wide range of cells in immunity and inflammation. In the present study, the mRNA expression levels of eight host immune markers containing of IFN-${\gamma}$, TNF-${\alpha}$, IL-2R, IL-4, IL-10, CXCL9, CXCL10, and CXCL11 in whole blood cells from active pulmonary TB patients were measured after T-cell mitogen (PHA) and MTB specific antigens (ESAT-6, CFP-10, and TB7.7). Among the TH1-type factors, IFN-${\gamma}$ mRNA expression was peaked at 4 h, TNF-${\alpha}$ and IL-2R mRNA expression was significantly high at the late time points (24 h) in active TB patients, TH2-type cytokine (IL4 and IL10) mRNA expression levels in both active TB and healthy controls samples did not changed significantly, and the mRNA expression of the three IFN-${\gamma}$-induced chemokines (CXCL9, CXCL10, and CXCL11) were peaked at the late time points (24 h) in active TB patients after MTB specific antigen stimulation. In conclusion, the mRNA expression patterns of the TB-related immune markers in response to the T-cell mitogen (PHA) differed from those in response to MTB specific antigens and these findings may helpful for understanding the relationship between MTB infection and host immune markers in a transcripts level.