• Title/Summary/Keyword: antifungal action

Search Result 95, Processing Time 0.02 seconds

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route

  • Patino-Portela, Melissa C.;Arciniegas-Grijalba, Paola A.;Mosquera-Sanchez, Lyda P.;Sierra, Beatriz E. Guerra;Munoz-Florez, Jaime E.;Erazo-Castillo, Luis A.;Rodriguez-Paez, Jorge E.
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.191-210
    • /
    • 2021
  • To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.

Study of Literature on RADIX STEMONAE(Investigation of efficacy and pharmacological action on RADIX STEMONAE) (백부근(百部根)에 관(關)한 문헌적(文獻的) 고찰(考察) (효능(效能) 및 약리작용(藥理作用)을 중심(中心)으로))

  • Choi Hae-Yun;Kim Jong-Dae
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.65-76
    • /
    • 1999
  • According to the study of literature on RADIX STEMONAE about its efficacy, pharmacological action, and clinical adaptive disease, the results are as follows; 1. About the efficacy of RADIX STEMONAE, it is known as moistening the lungs to arrest cough, and intestinal parasites from ancient to now, and dispelling phlegm is also known. 2. The clinical adaptation of RADIX STEMONAE is chronic bronchitis, pertussis, pulmonary tuberculosis in respiratory disease, and ascaricide for Ascaris, Enterobius vermicularis or eczema, pruritus, destroy louse for endermic liniment. 3. The pharmacological action of RADIX STEMONAE are antitussive, tuberculostatic, anthelmintic, antibacterial, antivirus, antifungal. 4. The antitussive mechanism of RADIX STEMONAE is central inhibitor for cough center of medulla oblongata, and the mechanisms of bronchial smooth muscle relax, and expectorant is also known.

  • PDF

An Antifungal Antibiotic Purified from Bacillus megaterium KL39, a Biocontrol Agent of Red-Pepper Phytophthora-Blight Disease

  • JUNG HEE KYOUNG;KIM SANG-DAL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1001-1010
    • /
    • 2005
  • Bacillus megaterium KL39, an antibiotic-producing plant growth promoting rhizobacterium (PGPR), was selected from soil. The antifungal antibiotic, denoted KL39, was purified from culture filtrate by column chromatography using Dion HP-20, Silica gel, Sephadex LH-20, and prep-HPLC. Thin layer chromatography, employing the solvent system of ethanol:ammonia:water=8:1:1, showed the $R_{f}$. value of 0.32. The antibiotic KL39 showed a negative reaction with ninhydrin solution, positive with iodine vapor, and also positive with Ehrlich reagent. It was soluble in methanol, ethanol, butanol, and acetonitrile, but insoluble in chloroform, toluene, hexane, ethyl ether, or acetone. Its UV spectrum had the maximum absorption at 208 nm. Amino acid composition, FAB-mass, $^{1}H-NMR,\;^{13}C-NMR$, and atomic analyses showed that the antibiotic KL39 (MW=1,071) has a structure very similar to iturin E. The antibiotic KL39 has a broad antifungal spectrum against a variety of plant pathogenic fungi including Rhizoctonia solani, Pyricularia oryzae, Monilinia froeticola, Botrytis cinenea, Altenaria kikuchiana, Fusarium oxysporum, and F. solani. An MIC value of $10\;{\mu}g/ml$ was determined for Phytophthora capsici. Macromolecular incorporation studies with P. capsici using radioactive [$^{3}H-adenine$] as the precursor, indicated that the antibiotic KL39 strongly inhibits the DNA biosynthesis of the fungal cell. Microscopic observation of the antifungal action showed abnormal hyphal swelling of P. capsici. The purified antibiotic KL39 was very effective for the biocontrol of in vivo Phytophthora-blight disease of pepper.

Antifungal Mechanism of Antifungal Peptide Derived from Cecropin A(1-8)- Melittin(1-12) Hybrid against Aspergillus fumigatus

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Maeng, Cheol-Young;Shin, Song-Yub;Seo, Moo-Yeol;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • The antifungal mechanism of the antifungal peptide against Aspergillus fumigatus, $K^{18,19}$-CA(l-8)-ME(l-12), derived from cecropin A(l-8)-melittin(l-12) was investigated by confocal laser scanning microscopy, cell wall regeneration, ATPase activity inhibition, and released potassium ion. By confocal laser scanning microscopy, $K^{18,19}$-CA(l-8)-ME(l-12) was detected on the surface of A. fumigatus, while cecropin A used as a negative control peptide was not detected. The protoplast of A. fumigatus treated with$K^{18,19}$-CA(1-8)-ME(1-12) failed to regenerate the fungal cell walls. Compared with cecropin A, the amount of potassium ion released by $K^{18,19}$-CA(l-8)-ME(l-12) was increased. Furthermore, $K^{18,19}$-CA(l-8)-ME(l-12) inhibited the ATPase activity on the plasma membrane. These results suggested that $K^{18,19}$-CA(l-8)-ME(1-12) acts on the plasma membrane of A. fumigatus and its antifungal action is due to the ion channel or pore formation on the plasma membrane.

  • PDF

Membrane Perturbation Induced by Papiliocin Peptide, Derived from Papilio xuthus, in Candida albicans

  • Lee, June-Young;Hwang, Jae-Sam;Hwang, Bo-Mi;Kim, Jin-Kyoung;Kim, Seong-Ryul;Kim, Yang-Mee;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1185-1188
    • /
    • 2010
  • Previously, papiliocin was isolated from the swallowtail butterfly Papilio xuthus and its antimicrobial activity was suggested. In this study, the antifungal mechanism of papiliocin against Candida albicans was investigated. Confocal laser scanning microscopy (CLSM) and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence analysis indicated that papiliocin disturbed the fungal plasma membrane. Moreover, the assessment of the release of FITC-dextran (FD) from liposomes further demonstrated that the antifungal mechanism of papiliocin could have originated from the pore-forming action and that the radius of the pores was presumed to be anywhere from 2.3 to 3.3 nm.

Inhibitory effects of 15 mushroom culture extracts on the growth of Alternaria alternata causing potato brown spot (감자갈색잎점무늬병균(Alternaria alternata)에 대한 버섯 배양액 추출물 15종의 생장 억제 효과)

  • Hyon Jin Park;Ha Thi Kim Nguyen;Sook-Young Park;Jaehyuk Choi
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.195-199
    • /
    • 2023
  • The fungus Alternaria alternata, responsible for causing brown to black spotting on numerous fruits and vegetables globally, was identified in 2022 as the causative pathogen of brown spot disease in potatoes in Korea. In pursuing potential inhibitors against A. alternata growth, we evaluated 15 mushroom culture filtrates: eight from Trametes spp. and seven from Polyporus spp., known for their antibacterial and anticancer properties. Antifungal activity was assessed by exposing each filtrate to A. alternata on a paper disc. Four filtrates displayed inhibitory action against the fungus, albeit with mild effects. Our findings highlight the potential of Trametes and Polyporus fungi as emerging antifungal candidates, offering promise in preventing potato brown spots.

Synergistic Effect of Polygodial with Imidazole Drugs on the Antifungal Activity (천연물 Polygodial과 Imidazole계 화합물의 병용에 의한 항진균 활성의 증진)

  • 이상화;이재란;김창진
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.221-227
    • /
    • 1999
  • The fungistatic and fungicidal activities of amphotericin B, fluconazole, miconazole, econazole, and 5-fluorocytosine against Saccharomyces cerevisiae were estimated in the presence of 1/2 minimum inhibitory concentration (MIC) and 1/2 minimum fungicidal concentration (MFC) of polygodial, respectively. Among them, the antifungal activities of miconazoles by polygodial was still shown against several yeast-like fungi including Candida albicans, Candida utilis, Cryptococcus neoformans, except for Candida krusei. The combination of polygodial with imidazole drugs against Saccharomyces cerevisiae was further examined using the macrobroth dilution checkerboard method. The fractional inhibitory concentration (FIC) and the fractional fungicidal concentration (FFC) index between polygodial and miconazole were 0.16 and 0.19, while the combination of polygodial with econazole exhibited the FIC index of 0.19 and the FFC of 0.25, respectively. These results suggest that polygodial and the imidazoles on the fungistatic and fungicidal action are highly synergistic.

  • PDF

Isolation and Characterization of Bacillus thuringiensis strain AF6 Producing an Antifungal Substance and a Mosquitocidal Delta-endotoxin Simultaneously (모기유충에 대한 살충성 내독소와 항진균성 물질을 동시에 생산하는 B. thuringiensis AF6균주의 분리 및 특성)

  • 김광현;이광배;신두만
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.40-46
    • /
    • 1998
  • For a biological control on a plant pathogen, Pryicularia Oryzae, and a mosquito, Aedes aegypti, Bacillus thuringiensis strain AF6 which produces parasporal inclusion, delta-endotoxin, was isolated. The B. thuringiensis strain AF6 was produced not only an antifungal substance(AFS) against P. oryzae, but also a mosquitocidal delta-endotoxin. The AFS of the strain AF6 in more stable at pH 4.0 than pH 10.0. At the mode of action, the AFS of the strain AF6 was inhibited hypha growth on potato agar plate(pH 5.0), and degraded cell walls of P. oryzae.

  • PDF

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.

Antifungal Activity of Medium-Chain ($C_{6}-C_{13}$) Alkenals against, and Their Inhibitory Effect on the Plasma Membrane $H^{+}$-ATPase of Saccharomyces cerevisiae

  • Lee, Jae-Ran;Lee, Sang-Hwa;Kubo, Isao;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • Aliphatic alkenals having 6 to 13 carbons were evaluated for antifungal activity against Saccharomyces cerevisiae. The activity was gradually increased with chain length, e.g., (E)-2-decenal and (E)-2-undecenal exhibited maximum potency, while (E)-2-dodecenal and (E)-2-tridecenal were completely inactive. Alkenals showed increasing inhibitory activity with chain length, as in the case of antifungal activity, towards glucose-induced medium acidification by the plasma membrane $H^+$-ATPase of S. cerevisiae. The group including (E)-2-nonenal, (E)-2-decenal, and (E)-2-undecenal exhibited maximum potency, but the potency of (E)-2-dodecenal and (E)-2-tridecenal demonstrated a sudden drop with respect to the former group. (E)-2-Nonenal revealed dose-responsive inhibition to the medium acidification and inhibited over 90% at a concentration of 1.25 mM ($175.3{\mu}g$/ml). In contrast to (E)-2-undecenal whose inhibitory efficiency increased with incubation time, inhibition by (E)-2-dodecenal was reversed with time. Of the tested alkenals, (E)-2-heptenal and (E)-2-octenal most highly inhibited ATP hydrolytic activity by the plasma membrane $H^+$ ATPase, while (E)-2-heptenal at 10 mM ($1121.8{\mu}g$/ml) showed an inhibitory efficacy of 93.2%.

  • PDF