• 제목/요약/키워드: anticyclonic activity

검색결과 6건 처리시간 0.024초

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • 한국수산과학회지
    • /
    • 제30권6호
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF

Two Overarching Teleconnection Mechanisms Affecting the Prediction of the 2018 Korean Heat Waves

  • Wie, Jieun;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.511-519
    • /
    • 2022
  • Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.

한반도 2016년 폭염에 여름철 계절안진동이 미친 영향 (Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea)

  • 이준이;김해정;정유림
    • 대기
    • /
    • 제29권5호
    • /
    • pp.627-637
    • /
    • 2019
  • Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.

한반도 여름 강우량의 변화에서 1996년을 중심으로 나타나는 남북진동 패턴 (The South-North Oscillation Centered on 1996 in Korean Summer Rainfall Variability)

  • 최기선;오수빈;김도우;변희룡
    • 대기
    • /
    • 제20권2호
    • /
    • pp.91-100
    • /
    • 2010
  • In accordance with the time series of rainfall in summer (June, July and August) in South and North Korea for recent 28 years (1981-2008), rainfall is substantially increased in South Korea since 1996, while it is significantly decreased in North Korea. In particular, the decreasing tendency of rainfall in summer in North Korea is more definitely observed during the $2^{nd}$ rainy season (late August - mid September) in intraseasonal variation. Such a feature is also confirmed in the spatial distribution of oscillation pattern between South and North Korea on the basis of 1996 which is obtained by empirical orthogonal function analysis using the summer rainfall observed in all weather observation stations in South and North Korea. For the decreasing tendency of rainfall in North Korea, it is found that northeasterlies from anticyclonic circulation centered on around Baikal Lake weaken convective activity during summer. On the contrary, the increasing tendency of rainfall in South Korea is related to the strengthened cyclonic circulation in the southern region of China and accordingly, enhances southwesterlies in South Korea.

The Intensification of Walker Circulation over the Past 15 Years from 1999 and Its Relation to TC Activity in the Western North Pacific

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • 한국지구과학회지
    • /
    • 제37권6호
    • /
    • pp.359-372
    • /
    • 2016
  • The time-series of Walker circulation index (WCI) in this study shows the strengthening of the Walker circulation in recent years. To further understand the large-scale features related to the WCI strengthening, a difference between the averaged meteorological variables in two time periods 1999-2013 and 1984-1998 is analyzed. The difference in 850 hPa stream flows between the two periods shows that the anomalous easterlies (anomalous trade wind) are dominant due to the strengthening of anomalous anticyclonic circulations at the subtropical Pacific of both hemispheres. The difference between the averaged zonal atmospheric circulations over $5^oS-5^oN$ in the two periods confirms that upward flows are strengthened at the tropical western Pacific and downward flows are strengthened at the tropical central and eastern Pacific in recent years. It matches the WCI strengthening in recent years. The time-series of tropical cyclone (TC) genesis frequency from July to September shows that a mean TC genesis frequency from 1999-2013 decreases compared to that of the time period 1984-1998. The monsoon trough in the period 1984-1998 was located in the further east direction and stronger than that in the period 1999-2013. TCs in the recent period that are generated in further west than TCs in the past period moved from the west. Thus, the TC intensity along the coasts in East Asia becomes weaker in recent period. The intensification of Walker circulation in recent years is related to the weaker TC intensity in East Asia through strengthened anomalous anticyclones at the subtropical western Pacific.

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • 한국기후변화학회지
    • /
    • 제34권22호
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.