• 제목/요약/키워드: anticarcinogenic activity

검색결과 103건 처리시간 0.031초

Effects of Dietary Garlic Powder on GST-P Positive Foci and Glucose 6-Phosphatase Activity in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis

  • Seo, Jeong-Min;Park, Kyung-Ae;Yeo, Eui-Zu;Choi, Hay-Mie
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.259-265
    • /
    • 1999
  • This study was designed to examine the anticarcinogenic effect of dietary supplementation with garlic powder on rat hepatocarcinogenesis. All rats were initiated by a single dose (200 mg/body weight) intraperitoneal injection of diethylnitrosamine (DEN), and three weeks later, subjected to two-thirds partial hepatectomy. Two weeks after initiation, four groups of rats were given experimental diets supplemented with 0 (control group), 0.5, 2.0, or 5.0% garlic powder for 6 weeks. Rats were sacrificed at eight weeks after initiation. The induction of placental glutathione S-transferase (GST-P) positive foci was significantly inhibited almost equally in all three groups fed garlic diets. Glucose 6-phosphatase (G6Pase) activity was increased in rats fed 0.5% and 2.0% garlic powder, and was negatively correlated with the number and area of GST-P positive foci. Thiobarbituric acid reactive substance (TBARS) contents were decreased in rats fed 2.0% and 5.0% garlic powder. Only 5.0% garlic powder supplementation significantly increased the glutathione content and the glutathione S-transferase activity, compared to the control group. Therefore, all levels of garlic powder, 0.5% to 5.0%, exerted an anti promotional effect during hepatocarcinogenesis. Dietary supplementation with garlic powder seemed to maintain microsomal membrane integrity by increasing G6Pase activities. Glutathione-dependent detoxifying enzymes did not seem to contribute to this protective effect directly. The present study suggests that garlic powder is effective in inhibiting the induction of GST-P positive foci, possibly by stabilizing the hepatic microsomal membrane.

  • PDF

볶은 들깨박으로부터 암예방효소계 활성성분의 분획 (Fractionation of Anticarcinogenic Enzyme Inducer(s) from Roasted Perilla)

  • 홍은영;강희정;서명자;남영중;권정숙;김정상
    • 한국식품영양과학회지
    • /
    • 제26권2호
    • /
    • pp.193-197
    • /
    • 1997
  • 볶은 들깨박에 존재하는 항암효소계 유도물질을 분리하기 위해 용매분획과 preparative TLC를 실시하여 이들에 대한 암예방지표효소인 quinone reductase와 AHH 유도활성을 조사하였다. 볶은 들깨박의 메탄올 추출물을 용매분획하여 QR을 측정한 결과 chloroform층에서 가장 높은 활성이 나타났다. 들깨박 메탄올 추출물을 TLC로 분리한 분획가운데 QR과 AHH유도활성은 F1$(R_{f}=0.8)$에서 가장 높았으며, 항산화능은 F1$(R_{f}=0.8)$과 F2$(R_{f}=0.7)$에서 가장 강한 것으로 나타나 QR유도성분과 항산화성분이 동일성분일 가능성이 높은 것으로 사료 된다.

  • PDF

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권3호
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.

육계의 전립선암세포에서 YAP 활성 억제를 통한 전이 저해 효능 연구 (Inhibitory effect of Cinnamomi Cortex extract on motility of prostate cancer cells through reducing YAP activity)

  • 정효원;김옥현;왕조유;김성은;박용기;이현정
    • 대한본초학회지
    • /
    • 제34권3호
    • /
    • pp.55-61
    • /
    • 2019
  • Objectives : Recently, natural bioactive components catch a major attention for their potent anticarcinogenic activity. In this study, the inhibitory effect of Cinnamomi Cortex (CC) was examined in PC3 prostate cancer cells. Methods : The toxicity of CC extract was evaluated with cell viability and cell morphology. The activity of Yes associated protein (YAP) was tested with qRT-PCR for the target gene expression such as CTGF and AMOTL2. Western blotting was performed for the evaluation of phospho-YAP level. For cell motility analysis, cellular motility was imaged by live imaging system for 6 hr. Successive images were used for the generation of movie file. Using this movie file, cellular migration was manually tracked and analyzed using time-lapse microscope and Fiji software. Results : Cytotoxicity of CC extract was not detected at $500{\mu}g/m{\ell}$ or below concentration. Although $500{\mu}g/m{\ell}$ of CC extract reduced CTGF and AMOTL2 gene expression as YAP target genes, it was not statistically significant (CTGF expression P=0.0605, AMOTL2 expression P=0.4478). However, phosphorylated YAP was highly enhanced by CC extract treatment, when normalized with total YAP protein expression, suggesting YAP activation was inhibited. Finally prostate cancer cell motility was markedly reduced by $500{\mu}g/m{\ell}$ of CC extract. Conclusions : CC extract suppresses cancer cell motility and migration ability through inhibiting YAP activation without prostate cancer cell death, suggesting that this herb might be effective therapeutic drug for prostate cancer metastasis.

Changes in Isothiocyanate Levels in Korean Chinese Cabbage Leaves during Kimchi Storage

  • Hong, Eun-Young;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.688-693
    • /
    • 2006
  • Glucosinolates are hydrolyzed by the enzyme myrosinase and are mainly found in cruciferous vegetables such as Chinese cabbage (Brassica campestris L. ssp. pekinensis). lsothiocyanates (ITCs) are glucosinolate degradation products with reported anticarcinogenic properties. Korean Chinese cabbage in the form of 'kimchi' is a staple part of the Korean diet. In this study, we examined the effects of storage temperature and duration on glucosinolate, ITC, soluble sugar, and organic acid levels in kimchi. Changes in pH and the impact of various parts of the Korean Chinese cabbage being used during the preparation of the dish were also assessed. Extracted ITC levels, analyzed via gas chromatography (GC) and GC/mass spectrometry (GC/MS), were higher in the midrib parts than in the cabbage leaves after storage at both 4 and $20^{\circ}C$. During storage, organic acid levels increased while soluble sugars were depleted. The pH initially increased (after 1 day at $20^{\circ}C$, and 1 week at $4^{\circ}C$), but subsequently decreased over time at both temperatures. Glucosinolate and ITC levels increased in the beginning of storage but then generally fell during further storage. Our data suggest that acidity-related reduction in myrosinase activity during storage may decrease glucosinolate and ITC levels. The changes in these levels depended on the storage conditions and the Korean Chinese cabbage parts used for the kimchi preparation.

Capsaicin-Induced Apoptosis of H-Ras-Transformed Human Breast Epithelial Cells is Rac-Dependent via ROS Generation

  • Kim, Seon-Hoe;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.845-849
    • /
    • 2004
  • Many studies have focused on the anticarcinogenic, antimutagenic or chemopreventive activi-ties of capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) which is a major pungent ingredient in red pepper. We have previously shown that capsaicin selectively induces apoptosis in H-ras-transformed MCF10A human breast epithelial cells but not in their normal cell counter-parts (Int. J. Cancer, 103, 475-482,2003). In this study, we investigated the possible roles of reactive oxygen species (ROS) and Rac1 in capsaicin-induced apoptosis of H-ras MCF10A cells. Selective induction of ROS generation by capsaicin treatment was observed only in H-ras MCF10A cells. Pretreatment of H-ras MCF10A cells with an antioxidant N-acetylcysteine(NAC) significantly reversed capsaicin-induced growth inhibition, suggesting that ROS may mediate the apoptosis of H-ras-transformed cells induced by capsaicin. Rac1 was prominently activated by H-ras in MCF10A cells. Based on the studies using a wild type Rac1 and a domi-nant negative Rac1 constructs, we propose that Rac1 activity is critical for inhibitory effect of capsaicin on growth of H-ras-transformed MCF10A cells possibly through ROS generation.

인체 암세포주에 대한 당근잎 추출 성분의 세포독성과 Quinone Reductase 유도효과 (Cytotoxicity and Quinone Reductase Induced Effects f Daucus carota L. Leaf Extracts on Human Cancer Cells)

  • 심선미;김미향;배송자
    • 한국식품영양과학회지
    • /
    • 제30권1호
    • /
    • pp.86-91
    • /
    • 2001
  • The anticarcinogenic effects of various food components on human cancer cells have received much attention in recent years. The precise effect and mechanisms of anticarcinogens in food materials on cancer cells have rarely been investigated. This study was carried out to determine the effects of Daucus carota L. leaf (DCL) extracts on cytotoxic and chemopreventive effect on human cancer cells. The experiment was conducted to determine cytotoxicity of Daucus carota L. leaf extracts on HepG2, Hela and MCF-7 cells by MTT assay. Among various partition layers of Daucus carota L. leaf, the ethylacetate partition layer (DCLMEA) at 500 $\mu\textrm{g}$/mL was shown to be most effective on MCF-7 cell lines. The four partition layers which are DCLM, DCLMH, DCLMB and DCLMH were less effecitve in inducing cytotoxicity than DCLMEA was. We also determined the induction of intracellular quinone reductase (QR) activity by adding DCL extracts on HepG2 cells. Among various partition layers of DCL extracts, DCLMH and DCLM were tested to be most effective with results such as 4.9 and 4.73 with a control value of 1.0.

  • PDF

적포도의 주 항산화물질, 레스베라트롤의 항암작용: 아폽토시스 의한 인체 암세포 사멸 유도 (Anticarcinogenic Activity of Resveratrol, a Major Antioxidant Presnet in Red Wine : Induction of Apoptosis in Human Cancer Cells)

  • 허연진;김정환;서효정;공구;서영준
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 1999
  • Resveratrol (3,5,4'-trihydroxy-trans-stilbene) has been considered to be as one of major antioxidants present in grapes responsible for beneficial effects of red wine consumption on coronary heart disease. This triphenolic stilbene has been suggested as a potential cancer chemopreventive agent based on its striking inhiitory effects on diverse cellular events associated with tumor initiation, promotion, and progression. The compound has strong antioxidative and anti-inflammatory activities which amy contribute to its chemopreventive/chemoprotective properties. In the present work, we have found that resveratrol reduces viability and DNA synthesis capability of cultured human promyelocytic leukemia (HL-60) cells. Likewise, the viability of human breast cancer cell line, MCF-7 was reduced by resveratrol treatment. The growth inhibitory and antiproliferative properties of resveratrol appear to be associated with its induction of apoptotic cell death as determined by morphological and ultrastructural changes, agarose gel electrphoretic analysis of internucleosomal DNA fragmentation, and in situ terminal end-labeling of fragmented DNA (TUNEL). This compound also inhibited the phorbol ester-induced expression of cyclooxygenase-2 (COX-2) protein in immortalized human mammary epithelial MCF-10A cells. These results suggest that resveratrol has the promising cancer therapeutic/chemopreventive potential.

Anticarcinogenic Effect and Modification of Cytochrome P450 2E1 by Dietary Garlic Powder in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis

  • Park, Kyung-Ae;Kweon, Sang-Hui;Choi, Hay-Mie
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.615-622
    • /
    • 2002
  • The purpose of this study was to determine the effects of dietary garlic powder on diethylnitrosamine (DEN)-induced hepatocarcinogenesis and cytochrome P450 (CYP) enzymes in weaning male Sprague-Dawley rats by using the medium-term bioassay system of Ito et al. The rats were fed diets that contained 0, 0.5, 2.0 or 5.0% garlic powder for 8 weeks, beginning the diets with the intraperitoneal (i.p.) injection of DEN. The areas of placental glutathione S-transferase (GST-P) positive foci, an effective marker for DEN-initiated lesions, were significantly decreased in the rats that were fed garlic-powder diets; the numbers were significantly decreased only in the 2.0 and 5.0% garlic-powder diets. The p-nitrophenol hydroxylase (PNPH) activities and protein levels of CYP 2E1 in the hepatic microsomes of the rats that were fed the 2.0 and 5.0% garlic powder diet were much lower than those of the basal-diet groups. Pentoxyresorufin O-dealkylase (PROD) activity and CYP 2B1 protein level were not influenced by the garlic-powder diets and carcinogen treatment. Therefore, the suppression of CYP 2E1 by garlic in the diet might influence the formation of preneoplastic foci during hepatocarcinogenesis in rats that are initiated with DEN.

Induction of Quinone Reductase and Glutathione S-Transferase in Murine Hepatoma Cells by Flavonoid Glycosides

  • Kim, Jung-Hyun;Lee, Jeong-Soon;Kim, Young-Chan;Chung, Shin-Kyo;Kwon, Chong-Suk;Kim, Young-Kyoon;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • 제8권4호
    • /
    • pp.365-371
    • /
    • 2003
  • The potential of seven flavonoid glycosides to induce quinone reductase (QR), an anticarcinogenic marker enzyme, in murine hepatoma cells (hepalc1c7) and its mutant cells (BPRc1) was evaluated. Among test compounds, kaempferol-3-O-glucoside, luteolin-6-c-glucoside, and quercetin-3-O-glucoside (Q-3-G) induced QR in hepalc1c7 cells in a dose-dependent manner. However, in BPRc1 cells lacking arylhydrocarbon receptor nuclear translocator (ARNT), only Q-3-G caused a significant induction of quinone reductase at the concentration range of 0.5 to 8 ug/mL, suggesting that it is a monofunctional inducer. Q-3-G induced not only phase 2 enzymes, including QR and glutathione-S-transferase, but also nitroblue tetrazolium reduction activity in HL-60 cells, a biochemical marker for cell differentiation promoting agents. In conclusion, Q-3-G merits further study to evaluate its cancer chemopreventive potential.