• 제목/요약/키워드: anticancer drug screening

검색결과 40건 처리시간 0.026초

수종(數種) 한약재(韓藥材)의 항암활성(抗癌活性) 연구(硏究)

  • 강탁림
    • 혜화의학회지
    • /
    • 제3권2호
    • /
    • pp.315-321
    • /
    • 1995
  • An extensive anticancer drug screening from natural resources has been carried out primarily using murine tumor model for past fourty years. Recently a new screening program from NCI, so called disease-oriented screening system. has been estabished to detect anticancer drugs that show selective growth inhibition toward variety of tissue specific human solid tumors originated from leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate amd breast. To develope the anticancer drugs from oriental medicinal herbs, we investigated the cytotoxic effects against human tumor cell panels with 23 kinds of MeOH extract of medicinal herbs. Evodiae Fructus, Meliae Toosendan Fructus, Saussureae Radix and Pharbitidis Semen showed strong activities against several tumor cell lines.

  • PDF

Structure-Activity Relationship Studies of Isoquinolinone Type Anticancer Agent

  • Cheon, Seung-Hoon;Park, Joon-Suck;Lee, Joon-Yeol;Lee, You-Na;Yi, Hyo;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • 제24권4호
    • /
    • pp.276-280
    • /
    • 2001
  • Substituted isoquinolin-1-ones (1) were synthesized to test their in vitro anticancer activity. 3-Biphenyl-H-methylisoquinolin-1-one (7) showed the most potent anticancer activity against five different human cancer cell lines.

  • PDF

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Jung, Joohee
    • Toxicological Research
    • /
    • 제30권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.

천연항종양성자원 とスクリニングの 실제 (Practices of Antitumor Screening Tests for Natural Products)

  • 코이치
    • 한국자원식물학회지
    • /
    • 제5권2호
    • /
    • pp.95-103
    • /
    • 1992
  • Present anticancer drugs in the clinical side have not showed a conclusive effect of the chemotherapy for cancer patients. In order to find much more efficient antitumor agents fromnatural resources, various screening methods vivo and in vitro have been developed by manyresearchers. The intention of this paper is to provide an outline of some background on the tumorsystem in drug development of natural products, to review some screening programs for theevaluation of antitumor activity and to introduce the practical procedures of some antitumorscreening methods in vivo and in vitro. At the end of this paper, the current literatures related toantitumor natural products from higher plants at our laboratory are described.Key words'anticancer drugs, screening methods.

  • PDF

항종양활성 Screening을 지표로 한 천연물의약품의 개발연구와 그 생약소재의 품질평가에 대하여(抗腫瘍活性スクリ-ニングを指標とした天然物醫藥品の開發硏究とその生約素材の品質評價について) (Development of New Antitumor Drugs from Natural Sources , with Guida)

  • Takeya, Koichi
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 1993년도 천연항암자원의 개발에 관한 국제학술회의
    • /
    • pp.14-20
    • /
    • 1993
  • We in anticancer drug development from natural resources have conceived and used a wide variety of experimental screening systems to support our efforts during the past 20 tears. Screens have been devided to address targets at the molecular, biochemical and cellular levels, both in vivo and in vitro. Screens have been essential for the experimental evaluation of the products from natural sources. In this congress, antitumor screening methods for deveol[ment of new drugs from natural sources and evaluation of their crude drugs are discussed.

  • PDF

Identification of matrix metalloproteinases secreted by human hepatocarcinoma HepG2 cells

  • Lee, Young Jae;Kim, Keun Cheon;Lim, Jeong Mook;Lee, Seung Tae
    • 한국동물생명공학회지
    • /
    • 제37권1호
    • /
    • pp.62-66
    • /
    • 2022
  • To date, the development of anticancer drugs has been conducted using two-dimensional (2D) cell culture systems. However, since cancer cells in the body are generated and developed in three-dimensional (3D) microenvironments, the use of 2D anticancer drug screening can make it difficult to accurately evaluate the anticancer effects of drug candidates. Therefore, as a step towards developing a cancer cell-friendly 3D microenvironment based on a combination of vinylsulfone-functionalized polyethylene glycol (PEG-VS) with dicysteine-containing crosslinker peptides with an intervening matrix metalloproteinase (MMP)-specific cleavage site, the types of MMPs secreted from human hepatocarcinoma HepG2 cells, a representative cancer cell, were analyzed transcriptionally and translationally. MMP3 was confirmed to be the most highly expressed protease secreted by HepG2 cells. This knowledge will be important in the design of a crosslinker necessary for the construction of PEG-based hydrogels customized for the 3D culture of HepG2 cells.

Establishment of Doxorubicin-resistant Subline Derived from HCT15 Human Colorectal Cancer Cells

  • Choi, Sang-Un;Kim, Nam-Young;Choi, Eun-Jung;Kim, Kwang-Hee;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • 제19권5호
    • /
    • pp.342-347
    • /
    • 1996
  • Doxorubicin, one of the clinically most useful anticancer agents, is used alone or in combination with other drugs against a wide variety of tumors, recently. But cancer cells developed resistance to this agent in many ways. This resistance is an important limiting factor of doxorubicin for anticancer drug. We newly established doxorubicin-resistant HCT15/CL02 subline from parental HCT15 human adenocarcinoma colon cancer cells. HCT15/CL02 revealed resistance to doxorubicin about 85-fold of its parental cells, and it also revealed cross-resistance to actinomycin D, etoposide and vinblastine but not to displatin and tamoxifen. And verapamil, a reversal agent of multidrug-resistance (MDR) by P-glycoprotein, elevated the cytotoxicity of doxorubicin against both HCT15 and GCT15/CL02 cells. But the relative resistant rate was not reduced. Verapamil had no effects on the tosicity of cisplatin to the both cell lines. These results indicate that HCT15/CL02 cells have some functionally complex mechanisms for MDR.

  • PDF

Chalcones-Sulphonamide Hybrids: Synthesis, Characterization and Anticancer Evaluation

  • Khanusiya, Mahammadali;Gadhawala, Zakirhusen
    • 대한화학회지
    • /
    • 제63권2호
    • /
    • pp.85-93
    • /
    • 2019
  • A panel of chalcone-sulphonamide hybrids has been designed by tethering appropriate sulphonamide scaffold with substituted chalcones as a multi-target drug for anticancer screening. Chalcones were prepared by Claisen-Schmidt condensation reaction of a substituted aldehyde with para aminoacetophenone. All the synthesized compounds were evaluated against selected five cancer cell lines, MCF-7 (Breast cancer), DU-145 (Human prostate Carcinoma), HCT-15 (Colon cancer), NCIH-522 (stage 2, adenocarcinoma; non-small cell lung cancer) and HT-3 (Human cervical cancer). Most of the synthesized chalcone-sulphonamide hybrids showed amended cytotoxic activity against various cancer cell lines which may be attributed to the linkage of sulphonamide with chalcone skeleton. The synthesized compounds were characterized by FT-IR, $^1H$ NMR, $^{13}C$ NMR and HR-LCMS and spectral study assert the structures of synthesized sulphonamide-chalcone hybrids.

점액세균 Sorangium cellulosum이 생산하는 약제내성 암세포의 증식억제물질 (Isolation of Antibiotics Effective to Multidrug-Resistant Cancer Cells from Sorangium cellulosum(Myxobacteria).)

  • 안종웅;이정옥
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.47-51
    • /
    • 2004
  • 암세포가 특정 항암제에 의해 내성을 획득하면 구조가 상이한 타 항암제에도 교차내성을 나타내는 이른바 암세포의 다약제 내성이 암 화학요법에 있어서 가장 심각한 문제가 되고 있다. 본 연구에서는 다약제 내성 암세포주인 CL02 세포를 이용하여 cellulose 용해성 점액세균인 Sorangium cellulosum의 60여종의 균주를 대상으로 다약재 내성 암세포에 유효한 항암물질을 탐색하는 과정에서, 균주 JW1006의 대사산물에서 강한 증식억제 활성을 발견하고 그 활성 본체로서 macrolide계 화합물인 Disorazoles $A_1$$A_2$를 분리하였다 Disorazoles $A_1$$A_2$는 인체기원의 암세포에 대해 모두 강한 세포독성($IC_{50}$ <0.04 ng/$m\ell$)을 나타낼 뿐 아니라 다약제내성 세포주인 CL02와 cisplatin내성 세포주인 CP70에 대해서 감수성 세포주와 동일한 활성을 나타내어 다약제 내성을 극복하는 우수한 활성 물질임을 확인하였다

Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation

  • Chen, Lei;Fang, Bo;Qiao, Liman;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.718-729
    • /
    • 2022
  • Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy with poor prognosis. Here, due to the necessity for exploring potential therapies against ESCC, we obtained the gene expression data on ESCC from the TCGA and GEO databases. Venn diagram analysis was applied to identify common targets. The protein-protein interaction network was constructed by Cytoscape software, and the hub targets were extracted from the network via cytoHubba. The potential hub nodes as drug targets were found by pharmacophore-based virtual screening and molecular modeling, and the antitumor activity was evaluated through in vitro studies. A total of 364 differentially expressed genes (DEGs) in ESCC were identified. Pathway enrichment analyses suggested that most DEGs were mainly involved in the cell cycle. Three hub targets were retrieved, including CENPF, CCNA2 (cyclin A), and CCNB1 (cyclin B1), which were highly expressed in esophageal cancer and associated with prognosis. Moreover, amentoflavone, a promising drug candidate found by pharmacophore-based virtual screening, showed antiproliferative and proapoptotic effects and induced G1 in esophageal squamous carcinoma cells. Taken together, our findings suggested that amentoflavone could be a potential cell cycle inhibitor targeting cyclin B1, and is therefore expected to serve as a great therapeutic agent for treating esophageal squamous cell carcinoma.